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Preface

These notes arose from a course of lectures given to final-

year and postgraduate students at the University of Nottingham,

and comprise a substantially revised and extended version of my

earlier contribution to this series. As before, the emphasis is

on concrete examples of groups exhibited in their natural set-

tings and thus to demonstrate at a modest level some of the per-

vasive connections between group theory and other branches of

mathematics. Such is the current rate of progress (both upwards

and outwards) in combinatorial group theory that no attempt at

completeness is feasible, though it is hoped to bring the reader

to within hailing distance of the frontiers of research in one

of two places.

My thanks are due to a host of colleagues, students and

friends whose names, too numerous to mention here, may be found

scattered through the ensuing pages. It is a pleasure to acknow-

ledge a special debt of gratitude to Professor Sandy Green for

introducing me to research mathematics, to Dr E.F. Robertson for

his encouragement and for help in correcting the proofs, and to

Dr H.R. Morton for much valuable advice on the final chapter.

My thanks also go to Professor I.M. James for keeping a paternal

eye on things, to Mrs Anne Towndrow for typing half the manu-

script, and to the staff of Cambridge University Press for their

speed and skill in setting the text (especially the other half).
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1 Free groups and free presentations

The words are all there ready; now we've got

to get them in the right order. (Python)

A group G is generated by a subset X if each of its elements

can be expressed as a product of members of X- . Such a product

is called a word, and a relation is an equation between two words.

A set R of relations that hold in C defines the group if every

relation that holds in C is a consequence of R . When this

happens, we say that G is presented by X and R . This defi-

nition is made rigorous using the concept of a free group (essen-

tially, a group having a set of generators between which there are

no non-trivial relations), which is defined using a universal

property. Having developed some elementary but important proper-

ties of free groups (such as their existence), we proceed to the

fundamental theorem of §2, where Schreier's proof is given in de-

tail and Nielsen's original method in outline. In §3, the defi-

nition of group presentation is made rigorous, and this is used

to clarify the proof of the Nielsen-Schreier theorem by means of

an anotated example. §4 explains how to pass from a group multi-

plication table to a presentation and from one presentation to

another, as well as describing a presentation for a direct product

of two groups.

§1. Elementary properties of free groups

The fundamental notion used in defining presentations of groups

is that of a free group. As the definition suggests, the idea of

freeness is applicable in algebraic situations other than group

theory.

Definition 1. A group F is said to be free on a subset X c F

if, for any group G and any mapping 6 : X - C , there is a

1



unique homomorphism 8' : F -* G such that

x8' = xe (1)

for all x E X . The cardinality of X is called the rank of F .

Remark 1. There are various ways of expressing the property (1).

We may say that 8' extends 8 or that 0' agrees with 6 on

X or, letting i : X - F denote inclusion, that the following

diagram is commutative:

I

X OF

G

In general, a diagram involving sets and mappings is called com-

mutative if any two composite mappings, beginning at the same

place and ending at the same place in the diagram, are equal. In

this case, this boils down to the single assertion that i.8' = 8

Remark 2. There is an analogy between this situation and a fam-

iliar one encountered in linear algebra; let V be a vector space

over a field k and B a basis for V . Then for any vector space

W over k and any mapping T: B->W , there is a unique k-linear

transformation T': V -- W extending T . This property is known as

'extension by linearity' and can be used to define the notion of

basis.

Remark 3. If we write 'abelian group' in place of 'group' in the

two places where this word appears in Definition 1, we obtain the

definition of a free abelian group. A free abelian group of rank

w is just the direct sum of w infinite cyclic groups (proved

for finite w in Theorem 6.2).

Remark 4. By convention, we take E (the trivial group) to be

free of rank 0 , the subset X being empty. The infinite cyclic

group {xnInE Z} is free of rank 1 . We denote it by Z as it

2



is just the multiplicative version of the additive group of in-

tegers. Take X = {x} , and given

e : X -> C

x H y '

simply define for all n E Z ,

xne'
n

y

e' is obviously a homomorphism extending e , while if e" is

another,

xne" = (xe")n = yn = (xe')n = xne'

proving that e' is unique.

Remark 5. There are one or two things to check before this defi-

nition can have any value. One can show for example that there

does exist a free group of any given rank, and that the rank of a

free group is well defined. These together with other elementary

properties of free groups form the content of our first four

theorems.

Theorem 1. (i) If F is free on X , then X generates F

(ii) Two free groups of the same rank are isomorphic.

(iii) Free groups of different ranks are not isomorphic.

Proof. (i) Recall that if X is a subset of a group G , the

intersection of all subgroups of C containing X is called the

subgroup generated by X and written <X> . We leave it as an

exercise to show that this coincides with the set of all finite

products of members of X and their inverses. Returning to the

case in hand, we let <X> play the role of C in Definition 1,

taking 0 to be inclusion. Letting denote the inclusion of

<X> in F , we have the following picture:
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XF
.l
<x>

Since this diagram commutes, we have te'c = e = t , so that

e'4 : F -> F extends i . But so does 1F , and so by the unique-

ness part of Definition 1 (with t,F in place of e,G ), we have

e' = 1F, , whence is onto and <X> = F , as required.

(ii) Let F. be free on X. and let tj : X. - F. denote in-

clusion, j = 1,2 . Assume that IX1I = IX2I , so that there is a

bijection K : X1 -> X2 . Let a,s be the homomorphisms extending

Kt2,K-111 as in the following diagrams:

11
2

X
2

K

X2
a

11 X12

1 1.

Now 11aR = K12S = KK-111 = 11 , so that aR : F1 } Fl extends

11 . But 1F1 also extends it , so uniqueness implies aR = lFl

Similarly, Ra = 1F2 , and a is the required isomorphism.

(iii) Let F be free on a subset X with IXI = w , and let

G be any group. Then it is the burden of Definition 1 that the

mappings: X } C are in one-to-one correspondence with the homo-

morphisms: F -* G . Thus, there are exactly 2w homomorphisms

from F to Z2 . Since this number is invariant under isomor-

phism, we see that 2w , and hence the rank w , is determined by

the isomorphism class of F .

Theorem 2. There exists a free group of any given rank.
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Proof. We construct the 'group of words' F = F(X) on a given

set X , and prove that it is free of rank JXi . The free group F

on a given set X is constructed as follows. Let k = {xIx E X}

be any set in one-to-one correspondence with, and disjoint from,

X and put T = X u X . If Tn denotes the nth Cartesian power

of T (n = 0,1,2,...), put W = U Tn , the set of words in X
n?O

A word w e Tn is said to have length n , and the single element

of TO is called the empty word and denoted by e . A word

w = (t1,...,t in W is called reduced if there is no i be-

tween 1 and n-1 such that ti = ti+1 , interpreting s

Letting F be the set of reduced words, it is clear that e e F

and X S F . The product of two reduced words of positive length

a = (x1,...,xm), b = (Yl'...,yn)

is defined to be

(xl,...,xm-k' Yk+l,...,yn)

where k is the largest integer such that none of the words

(x m,yl),...,(xm-r+1'yr)

are reduced, while we = ew = w for any word w . It is clear

that this defines a binary operation on F for which e is an

identity and (x1,...,xm)-1 = (xm,...,x1) . The tricky bit, sur-

prisingly enough, is the proof of the associative law. Now take

three words in F :

a = (x1,...,xg), b = (Yl,...,ym), c = (z1,...,zn) .

If any of t,m,n are zero, we clearly have (ab)c = a(bc) , so

assume they are all positive. Supposing that the lengths of ab

and be are 2+m-2r and m+n-2s respectively, we distinguish

three cases. First, if r+s < m , both (ab)c and a(bc) are
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equal to the reduced word

(XV ,..., z z
1 R-r yr+1

Ym-s's+l''..

n

secondly, if r+s = m , both are equal to ae , where

a = (x1,.... xR-r)' e = (zs+l,...,zn)

Finally, in the case r+s > m , we define

6 = (xR-r+1,...,x
R-m+s

) _ (Ym_s+1,...'Yr)-1 = (z m-r+l,. ..,z
s
) ,

-1

Y =
(xR-m+s+1,...,xR) = (Yl,...,Ym-s) ,

-1
d = (zl,.... zm-r) = (Yr+l'...'ym)

Thus, a = asy , b = y-1 a-16-1
, c = dse , since the brackets can

safely be ignored by the first case handled above. Now by the

rule for forming products,

(ab)c = (ad-1)(6 e) = a(Se) , and

a(bc) = (aRy)(Y-1e) _ (as)e ,

and again by the first case, these both coincide with the reduced

word (x1,...,xf-m+s'zs+l'...,zn) .

We now simplify the notation by dropping the commas and brackets

and writing x-1 for x (x E X u X) , so that if i is the in-

clusion of X in F , all we have to do is check Definition 1 ver-

batim. If G is a group and 8 : X } G a mapping, define

e8' = e , x 18' = (x8)-1 ,

(x1...xn)8' = x18'...xn8'

for any x E X and any reduced word x1...xn . It is a routine

6



matter to check that 0' is a homomorphism extending 0 . If 0"

is another, it must agree with 0' on X and since X plainly

generates F , we must have 0' = 0" .

Theorem 3. Let F be a group and X a subset of F ; then F

is free on X if and only if the following two conditions hold:

(i) X generates F ,

(ii) there is no non-trivial relation between the elements

of X , that is, if for n E N , x = x1...x where for all i

either x. E X or x.1 E X , and for all i with 1 5 i 5 n-1

x
i
x
i+1

X. e, then x x e.

Proof. First suppose that F is free on X , so that X gen-

erates F by Theorem 1(i). Now let X' = {x'IxE X} be an ab-

stract copy of X and consider the group of words F(X') as

constructed in the proof of Theorem 2. By Definition 1, the

priming map : X -> F(X') extends to a homomorphism : F - F(X')

under which any reduced word x c F is mapped to a reduced word

in F(X') of the same length. Thus no reduced word in F of

length n <_ 1 can be e , since this certainly holds in F(X')

For the converse, note that conditions (i) and (ii) imply that

every member of F is uniquely expressible as a reduced word in

X U X 1 . The freeness of F on X is now verified in just the

same way as that of F(X) on X in the final part of the proof of

Theorem 2.

Theorem 4. If X is a set of generators for a group G and

F(X) is the group of words in X , then there is an epimorphism

0: F(X) } G fixing X elementwise. Every group is a homomorphic

image of some free group.

Proof. The required epimorphism is just the (unique) extension

to the free group F(X) of the inclusion : X - G ; it is onto

because X S Im 0 5 G and' <X> = G . The second assertion now

follows from the simple observation that any group G has a set

of generators, for example, G = <G> .
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EXERCISE 1. Let X be a subset of a group G . Prove that <X>

is equal to the set of all finite products of members of X and

their inverses. Deduce that if two homomorphisms from G to a

group H agree on a set X of generators of G (i.e. <X> = G),

then they are equal.

EXERCISE 2. Given groups G and H , a subset X of G and a

homomorphism 0: G -H , prove that <X0> = <X>0 . Defining

d(G) = min{ I XI I X c G , <X> = G} ,

prove that for any homomorphic image H of G , d(H) s d(G) .

EXERCISE 3. Given a subset X of a group G , define the normal

closure R of X to be the intersection of all normal subgroups

of G containing X . Prove that R is just the set of all fi-

nite products of conjugates of members of X and their inverses.

If H is a group and 0: G -> H an epimorphism, show that

X0 =R0 .

EXERCISE 4. Let F be a free group of rank w and G a group

isomorphic to F . Prove that G is free of rank w .

EXERCISE 5. A group G has a normal subgroup N such that GIN

is free. Prove that G has a subgroup F such that FN = G and

F
n
N = E . (Such an F is called a complement for N in G .)

EXERCISE 6. Call a group P projective if given any epimorphism

v: B - C of groups and any homomorphism P - C , there is a

homomorphism p: P -; B such that = pv

V

8



Prove that P is projective if and only if P is free.

EXERCISE 7. Call a group I injective if given any monomorphism

I: A -> B of groups and any homomorphism A - I , there is a

homomorphism u: B -> I such that = Iu

Prove that I is injective if and only if I is trivial. (Hint

(D.B.A. Epstein): Assume that the free group A = F(x,y) is a

subgroup of a group B = <x,y,z> in which z-lxz = y, z-1yz = x,

2z = e

§2. The Nielsen-Schreier theorem

The first step in proving the Basis Theorem for finitely-

generated abelian groups (see §6 below) is to show, at least in

the case of finite rank, that subgroups of free abelian groups are

free abelian, and that the rank of the subgroup does not exceed

the rank of the group. This is a classical result of Dedekind,

and our purpose here is to prove its non-abelian analogue, taking

care to point out that the assertion about ranks does not hold in

the non-abelian case. We shall consider the free group F = P(X)

on an arbitrary set X , invoking the Axiom of Choice to assert

that X can be well-ordered. The intuitionistic reader is free

to assume that X is finite, since this is the only case of

practical interest to us.

The proof we give is essentially due to Schreier, and is

divided into a number of steps, the most important for the sequel

012) being embodied in Lemma 3.

1. The ordering of F . Given that X is well-ordered, so

is X-1 and so also is T = X u X =
±1

; for example, if

x,y e X , define x < y 1, and

9



-1 -1x < y <=> x < y

Now the elements of F are words of the form

w = x1...xn , xi c T , xixi+l x e ;

we call n the length of the word w , n = k(w) , and take

2,(e) = 0 . For v,w E F , we define v < w if k(v) < k(w)

and order words of equal length lexicographically, that is, if

v = x1...xn x w = y1...yn , xi,Yi E T ,

and m is least such that xm x ym , we define

v < w <=> x <
m y m

The result is easily seen to be a well-ordering of F . For

example, if X = {x,y} , then with respect to the ordering

x < y < x < y of T , the first few elements of F are
-1 -1 2 -1 2 -1 -1e < x < y <x <y <x <xy <xy <Yx<Y <Yx <x y

-2 -1 -1 -1 -1 -1 -2 3 2 2 -1<x <x y <y x<y x <y <x <xy<xy <xyx .
Note that in any subgroup H of F , the least element is always

e (since this is least in F ) and if, for example, H = <xyx>

the least element of the coset Hxy2 is x-1y . That F is

well-ordered is particularly easy to see in the case of finite

rank, for then there are only finitely many words of any given

length.

Lemma 1. Let

w = x1...xn, xi E T, n ? I ,

be a reduced word in F ; then, for v E F ,

v < x 1...x => vx < w
n-1 n

10



Proof. If k(v) < n-1 , then k(vx
n
) 5 k(v) + 1 < n = k(w) , and

the result holds. Otherwise

v = y1...Yn-1' yi E T ,

and there is a least m such that y x and then y < x
m m m m

If yn-lxn = e , k(v) = n-2 < n = k(w) and we are done. If not

vxn = Yl " 'Yn-lxn '

and, since k(vxn) = k(w) ,
y1 = xl, ...,ym-1 = xm-1

and

ym < x
m

, we have vx
n

< w , as required.

2. The Schreier transversal. We fix a subgroup H of F

once and for all. Recall that a right coset of H in F is a

subset of F of the form

Hx = {hxIh E H}

for X E F . The key property of cosets is that

Hx=HyorHxnHy=Q, x,yE F .

The cosets of H thus yield a partition of F , and we can find

a subset U of F such that, for any x E F , there is exactly

one element u E U for which x E Hu , that is,

F = u Hu
uE U

Such a subset U is called a (right) transversal for H in F

The Schreier transversal (with respect to the given ordering of

T ) is obtained if the representative in U of each coset is

taken to be the least element of that coset. Alternatively, we

list the cosets Hx as x runs over F in ascending order, thus:

He,Hx1,Hx2,...

11



and, for each x E F , delete Hx from the list if Hx = Hy for

some y < x . We then put U = the set of x such that Hx re-

mains in the list. By construction then, the transversal U has

the property:

x <y, Hx=Hy=> yj U , (1)

from which follows the so-called Schreier property, which we now

derive.

Lemma 2 (Schreier property). Let x1...xn be a reduced word

in F (n >_ 1) ; then

x1...xn E U => xl...xn-1 E U .

Proof. To prove the contraposed assertion, suppose that

x1...xn-1 j U . It follows from the fact that U is a transversal

that there is a u E U such that

Hu = Hxl " ' xn-l '

whence, by definition of U, u < x1...xn-1 . Thus by Lemma 1,

uxn < xl...xn . Now let v E U be such that Hv = Huxn , so that

v ux
n

Thus, v < x 1...x
n

and Hv = Hx 1...x
n

, so (1) implies

that x1...xn j U , as required.

We call any transversal with the property of Lemma 2 a Schreier

transversal, and note that any such transversal contains the

identity e . While for the sake of definiteness we continue to

let U denote the transversal consisting of the least element in

each coset, we make the following important observation: the proof

of Lemma 3 below requires only that U is a transversal contain-

ing e , while that of Lemma 4 depends only on the fact that U

is a transversal with the Schreier property. Thus, any Schreier

transversal leads to subsets A and B (constructed below) with

the required properties.

12



3. The subset A of H . Let U E U, x c T ; then as ux c F

and U is a transversal for H in F , there is just one v c U

such that ux c Hv . Since v depends on u and x , we denote

it by ux . Since ux = by for some h c H , we have uxux-1

= h E H , for all u c U, x E T We put

A= {uxux-1 J u E U, x E T}

which is a subset of H .

Lemma 3. The set A just defined generates H .

Proof. Let x E H ; since x c F , we can write it as

xl...xn, xi E T

a reduced word. We define a sequence of elements ul,...,un+l E U

inductively as follows:

ul = e, ui+l = uixi, i ? 1

Consider the sequence:

ai = uixiui+l, 1 <_ i <_ n

By definition, each ai E A and so H contains

-1 -1
al...an = u1xIx2...xnun+l = xun+l

Since xun+1 and x both belong to H , so does un+l
,
and also

un+l E U ; thus un+l = e , since e is the (unique) element of

U representing the trivial coset H . Hence, x = a1...an

proving that A generates H , as claimed.

4. Further properties of A. These are compressed into a lemma.

13



Lemma 4. If u E U and X E T= X , then

(i)
uxux-1

= e if and only if ux E U

(ii) u = uxx
i

(iii) let ux,vy c UT\U ; then either: (a) xux ivy = e , in which

case v = ux, y = x u = vy , or (b) the reduced word in F

representing w = xuxvy has length at least two, begins with x

and ends with y ;
- -1

(iv) the words uxux ux I U , are all distinct

and the set of them is equal to B u B-1 , where

B = {uxuxiIuE U,xE X}\{e} .

Proof.

(i) uxux
1

= e <=> ux = ux <_> ux E U

(ii) As Hux = Hux , we have

Hu =
Huxx-1

=
Hxx-1

and so u = uxx , since both lie in U

(iii) This assertion is the crux of the whole proof and it depends

heavily but solely on the Schreier property. Let

ux = rl...rm , v = tl...tn

be reduced words (all ri,t
J
. E T), so that

w = xrmi...r1 tl...tny

We examine this word minutely;

xrmi = e =>
uxx-i

= r1...rm-1 E U , by Lemma 2,

-1
_> u = uxx , by part (ii),

=> ux = ux

14



_> ux c U , by part (i),

contrary to assumption. Similarly, if t
n
y = e , then

vy = t1...tn-1 E U , by Lemma 2, which again is not allowed.

Thus we see that xr-1 and t y are both reduced words. Let
M n

ux-lv be equal to the reduced word

-1 -1
rm ...ri+lti+l...tn

There are four cases to consider:

(1) i < m and i < n : then case (b) holds.

(2) i = m < n : here w is the reduced word

m+l...tny , and (b) holds, or

tm+2*** tny , whereupon:

xtm+l - e => uxx-1 = t1...tm+1 E U , by Lemma 2

_> uxx 1 = u , by parts (ii) and (i),

=> ux = ux

=> ux E U , which is not allowed.

(3) i = n < m : here w is the reduced word

xrml...rn+1y , and (b) holds, or

-1 -1
xrm ...r

n+2 ,
whereupon:

rn+ly = e => vy = E U , by Lemma 2,

contradicting our hypotheses.

(4) i = m = n : here w is equal to either xy (and (b) holds),
-1

or to e , whereupon y = x , ux = v , and so by part (ii),

15



-1vy=uxx u

Thus (b) holds in all cases but the last, which yields (a).

-1 --1
(iv) Let

uxu-x

= vyvy , ux,vy e UT\U ; then

xux
lvyy-1

= u
lv

(4)

Now by parts (i) and (ii), vyy ` does not belong to U , so we

can apply part (iii) to the left hand side of (4), which is thus

equal to either (a) e , whereupon u = v and x = y , or (b) a

reduced word of the form x...y-1 so that u-1v x e , and reduc-

ing the right hand side, either u ends in x-1 whence ux E U

or v ends in y-1 whence vy E U (using Lemma 2) and both

these possibilities are excluded. This proves that the uxux 1

are all distinct, provided ux V U

Letting

B= {uxux-1

I U E U, x E X-1 )\fel ,

the above implies that the set in question is B u B . Since, for

u E U, x E T,

(uXUX ) = llXx yu 1 = uxx uxx
-1

by part (ii), we have that B-1 c B and B-1 c_ B , so that

B =
B-1

, as required.

5. The main theorem.

Theorem 1 (Nielsen-Schreier). If F is free and H is a sub-

group of F , then H is free. If IF :HI = g and the rank r

of F are both finite, then the rank of H is equal to

(r-l)g + 1 .
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Proof. We prove, using the above notation, that H is free on

the set B . Since A = B u B-1 u {e} (Lemma 4, part (iv)), and

A generates H (Lemma 3), we see at once that B generates H

Now let bl...bn, n >_ 1, be a reduced word in the elements of

B u
B-1

= A\{e} ; suppose that

b. = u.x.u.x.-1, 1 5 i <_ n

u. E U, x. E T, u.x. U , and consider the product

-1
bibi+l - uixiuixi ui+lxi+lui+lxi+l -1

for some i between 1 and n-1 . Since bl...b
n

is reduced,

bibi+l x e , and so by Lemma 4(iii), x
i
u
i
x
i
-1 ui+lxi+l is equal

to a reduced word in the elements of T of the form xi...xi+l

of length at least two, and so

bl...bn = ...xl...x2... ... ...xn.

the right hand side being a reduced word in T which has length

at least n >_ 1 . Hence, b1...bn a e , and we have proved that

there is no non-trivial relation in H between the elements of

B . Theorem 1.3 implies that H is free on B .

6. Assume from now on that the rank r of F is finite. We

first prove the numerical part of the theorem in the case when H

is a normal subgroup N of F . Let N have finite index k

in F . We modify the construction of the Schreier transversal

by restricting our attention to reduced words x1...xn in F

with each x
i

in X (rather than in T ). If such words are

called positive, we choose as the representative in U of any

right coset to be the least positive word in that coset (for this

U , note that e represents the coset N ). It is easy to check

that the Schreier property holds (see Exercise 3 below), but we

must first show that each non-trivial coset does in fact contain

a positive element, and this we now do. If X E T , then

17



Nx E F/N = G say, a group of order k , so that by Lagrange's

Theorem, (Nx) k = N , that is, xk E N . Now let x1...xn be any

reduced word in T ; then for all i with x E X

Nx1...xn = x1...xi-1(Nxi)xi+l...xn
,

since N normal,

x1...xi-1(Nx
-ik

xi)xi+l...xn , as x
k
i E N

-k+l
= Nx1...xi-lxi xi+l...xn

and
x-k+1 = (x-1)k-l , a reduced word in X . Performing this

operation for each i with x-1
i

E X , we obtain

Nx1...xn = Nw

where w is a reduced word in X (rather than T ), so that

w E Nx1...xn , as required.

By the remark at the end of Step 2 (above), N is freely

generated by the set B constructed from this new U . Now con-

sider the elements

ux, uE U, xE X .

Since the uxux l x e are all distinct by Lemma 4(iv), and there

are kr of them altogether, we must show that precisely k-1 of

them are e , that is, precisely k-1 of the ux belong to U

If v = x1...xn E U\{e} (so that all xi E X, n ? 1), then

v = uxn with u E U . So every element of U\{e} appears in the

set of ux's , that is, UX n U = U\{e} , as required.

7. Now let H 5 F be arbitrary of finite index g . Let C

be the set of g right cosets of H in F , and for each w E F

let

T : C - C
w

Hv 1+ Hvw

18



As each T
w

is one-to-one, we get a mapping

F } S
g

W H T
w

of F into the symmetric group of degree g , which is obviously

a homomorphism. Ker T is thus a normal subgroup of F contained

in H and having index at most g:. Put N = Ker T , so that

N < F, N <_ H (so N < H), IF : NI < -

Let IH : NI = h , so that IF : NI = IF : HI IH : NI = gh . Then, by
the normal case proved above, with r(H) = rank of H , r(N) = rank

of N , we have:

N < F, IF : NI = gh => r(N) = (r-l)gh + 1 , and

N < H, IH : NI = h => r(N) = (r(H)-l)h + 1 ,

whence r(H) _ (r-1)g + 1 , as required.

It would be both instructive and useful at this point to work

through the various steps of the proof of the theorem in the case

of a particular example, but as this can be done both more easily

and more profitably using the idea of a group presentation, we

postpone our example until the next section.

Remark. In conclusion, it is appropriate to say a few words

about Nielsen's original proof of the subgroup theorem. Given a

subset Y = {yi Ii E I} of a free group F = F(X) , it is trans-

formed into another by any of the following three operations:

i' replace yi by y-1

ij replace yi by yiyj

\i remove yi , if yi = e
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where i,j E I , i x j , and in each case all yk are unaffected

for k i . These operations are called elementary Nielsen

transformations and are analogous with the elementary row and

column operations on matrices used to prove the corresponding sub-

group theorem in the abelian case (see Dedekind's theorem in §6

below). A finite sequence of such moves is called a Nielsen

transformation, and this is regular if no move of type \i is

involved. Given a Nielsen transformation T of a subset Y S F

we note the following facts:

(i) <Y> = <Y-E>

(ii) if T is regular, there is a regular Nielsen transform-

ation from YT to Y ,

(iii) any permutation of any finite subset of Y can be

achieved by a regular Nielsen transformation,

(iv) if T is regular and Y is a basis for F , then so

is YT .

The first of these is obvious and the others are exercises.

A subset Y s F is called N-reduced if, for any x,y,z E Y

the following three conditions hold:

x s e f

xy x e => i(xy) ? 2(x),2(y)

xy x e x yz => 2(xyz) > 2(x) - 2(y) + 2(z)

where for w E F , 2(w) denotes the length of w as a reduced

word in X . The crux of Nielsen's proof lies in establishing

the following assertion:

(*) V finite Y S F , 3 Nielsen transformation T such that YT

is N-reduced.

This requires a delicate induction, and we omit it. On the other

hand, it is a relatively simple matter to deduce from (*) that

finitely-generated subgroups of free groups are free. The proof

of (*) can be adapted to cover the case when Y is infinite, and
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the whole approach has some valuable by-products (see Exercises

12-17).

EXERCISE 1. If F is a free group of rank w , what is the

cardinality of F as a set?

EXERCISE 2. If F is free of finite rank r , what is the num-

ber of words of length n in F ?

EXERCISE 3. Let F be free on a finite set X , and let N be

a normal subgroup of F of finite index, so that each coset of

N in F contains a positive word. Let U be the transversal

consisting of the least positive word in each coset. Prove the

following two-sided version of the Schreier property:

xl...xn e U => xl...xn-1 and x2...xn e U

where each X. E X and n ? 1
1

EXERCISE 4. Write each member of the symmetric group S4 as a

positive word in x = (1234) and y = (12) in such a way that

the resulting set of 24 words satisfies the two-sided Schreier

property of the previous exercise.

EXERCISE 5. Let H be a subgroup of an arbitrary group G with

IG: HI = g < - . Prove that if G can be generated by r ele-

ments, then H can be generated by (r-l)g + 1 elements.

EXERCISE 6. Let H be a subgroup of a group G with

IG: HI = g < - . Prove that G has a normal subgroup N such

that g <- IG : NI s g ! .

EXERCISE 7. Let H be a subgroup of finite index in a free

group F = F(X) with Schreier transversal U . Let r be the

graph whose vertices P
u

are in one-to-one correspondence with

U , and with an edge labelled x e X from P
u

to P
v

if and
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only if ux = v . Prove that r is a tree (no loops), and use

Euler's formula to deduce that the set {(u,x) E UxX I ux U} has

exactly JUG - 1 elements.

EXERCISE 8. Let F be free on X , and let X' be a set ob-

tained from X by either

a) replacing x E X by x-1 , or

b) replacing x E X by xy (x x y c X)

and leaving all other elements of X fixed. Prove that in either

case, X' is a basis for F .

EXERCISE 9. If Y is a subset of a free group F and T is a

regular Nielsen transformation of Y , prove that there is a regu-

lar Nielsen transformation from YT back to Y .

EXERCISE 10. Prove that any permutation of a finite subset of Y

can be effected by a regular Nielsen transformation.

EXERCISE 11. Let Y be a Nielsen reduced subset of a free group

F = F(X) , and let w = y1...ym , m ? 0 , yi E Y and yiyi+l x e
for all possible i . Prove that, as a word in X- , f(w) ? m

Deduce that <Y> is free on Y , and use (*) to prove that

finitely-generated subgroups of free groups are free.

EXERCISE 12. Let F be free on X and let Y S F be N-reduced.

Prove that
X±l

n <Y> = X±l n
Y±l

. If in addition Y is a basis
+l +l

for F , prove that X = Y- Use this in conjunction with (*)

to obtain information about Aut F ; prove, for example, that if

F is finitely generated, then so is Aut F , and write down some

relations that hold between the generators you have constructed.

EXERCISE 13. If F is a free group of finite rank r , use (*)

to prove that F cannot be generated by fewer than r elements.

Show further that if a set Y of r elements generates F ,

then it is a basis for F . Deduce that free groups of finite

rank are Hopfian, that is, if N < F and F/N = F , then N = E
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EXERCISE 14. If x,y are distinct elements of a basis of a free

group, prove that the set {y-nxyn I n e Z} is N-reduced. Deduce

that a free group of finite positive rank is isomorphic to a

proper subgroup of itself (in contrast to the conclusion of the

previous exercise).

EXERCISE 15. Let ¢ be a homomorphism from a finitely-generated

free group F onto a free group G . Prove that F has a basis

S = S1 u S2 such that maps <S1> isomorphically onto G

and <S 2> to E .

EXERCISE 16. If a and b are elements of a free group such

that am commutes with bn (m,n e Z\{O}) , prove that a and

b are powers of a common element c .

EXERCISE 17. Use the previous exercise (thrice!) to show that the

relation: a - b <=> ab = ba , defined on the non-trivial elements

of a free group F , is an equivalence relation. Deduce that if

e s a E F , the centralizer CF(a) = {wE F I aw=wa} is cyclic.

§3. Free presentations of groups

Suppose that

X is a set,
F = F(X) is the free group on X

R is a subset of F ,

N = R is the normal closure of R in F , and

G is the factor group F/N .

Definition 1. With this notation we write G = <XI R> , and call

this a free presentation, or simply a presentation, of G . The

elements of X are called generators, and those of R relators.

A group G is called finitely presented if it has such a presen-

tation with both X and R finite sets.
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Theorem 1. Every group has a presentation, and every finite

group is finitely presented.

Proof. If G = <X> and 0 : F(X) -- G is the epimorphism of

Theorem 1.4, then G = <XI Ker 8> . If IGI = g < = , we can take

X = G and replace Ker 8 by a set of free generators for Ker 8

This is a presentation with g generators and g2 - g + 1 re-

lators, by the Nielsen-Schreier theorem.

Straight from the definition, we see that the free group on a

set X has the presentation F = <Xl > ; in fact, it follows

from Theorem 1.3 that <XIR> is free on X if and only if R= 0

or {e} . By convention, the group <OiQi> is trivial (free of

rank 0). Taking the case X = {x} and R = {xn} , n e N , it

follows from Remark 1.4 and elementary group theory that the re-

sulting group is just the multiplicative version of the additive

group of integers modulo n (since for a subset S of an abelian

group, S = <S> ).

Theorem 2. (i) if F is free of rank n >_ 0 , we have

F=<XI >

where X is a set with lXi = n . (ii) For the cyclic group of

order n E N , we have

Z = <x l xn>n

In view of the latter assertion, the sanguine reader might

reasonably suspect the group

3 2
G = <x,ylx ,y ,[x,y]>

where [x,y] denotes the commutator x-1y-1xy , to be none other

than the direct product Z2 x Z3 (alias Z6). Nor would he be
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disappointed (Theorem 4.2 below). Thus we arrive at a suitably

non-trivial example with which to illustrate the proof of the

Nielsen-Schreier Theorem.

Example 1. Let us take

F = <x,yl >, R = {x3,y2,[x,y]}, R = N, C = F/N,

so we are armed with the prior knowledge that IF: NI = 6 (see

Exercise 1).

Our first task is to find the Schreier transversal for N in

F , modulo the ordering x < y on {x,y} . The first seventeen

elements of F are thus

-1 -1 2 -1 2 -1 -1e, x, y, x , y , x , xy, xy , yx, y , yx , x y,

-2 -1 -1 -1 -1 -1 -2x , x y , y x, y x , y

Only six of these elements, namely

-1 -1
e, x, y, x , xy, yx

can belong to our Schreier transversal U, because

-1 -2
y = y y c Ny , and y<y1

(1)

This also excludes
xy-1, x-1y-1, y-1x, y-1x-1, y-2,

since these

all involve y-1 (and Nd F ). Further,

x2 = x3x-1 E Nx-1 , yx = xy[x,yl-1 c xyN = Nxy ,

y2 = y2e c Ne , x-ly = y([x,y
-1 )y-lyx-1 E Nyx-1

x-2 = (x3)-lx
E Nx .

We now claim that U contains no element of length greater

than 2 , for if the reduced word xl...xn E U , n > 2 , each
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-1 -1
xi c {x,y,x ,y } , then x1x2 E U and xlx2x3 E U , by the

Schreier property. So, by (1),

-1
x1x2 = xy or yx ,

and so x1x2x3 must be one of:

2 -1 -2 -1 -1 -1
xyx, xy , xyx , yx , yx y, yx y

Now

xyx c Nxyx = Nyx2 = yNx2 = yNx-1 = Nyx-1 ;

and similar manipulation yields that the remaining five words lie

in

Nx, Ny, Nxy, Nx-l, Nx-1

respectively, contradicting the fact that x1x2x3 E U . U thus

contains no element other than those in (1), and as JUG _ IG : NI

6 , these represent distinct cosets.

We obtain the sets A and B by means of the following table.

T -1 -1
U x y x y

-2
e e e e y

3 -2 -1
x x e e xy x

-1 -1 2
y yxy X y e e

-1 -1 -1 -3 -1 -1 -1x e x yxy x x y xy

2 -1 2 -1 -1 -1
xy xyx y xy x xyx y e

-1 -1 -2 -1 -1 -1 -1yx e yx yx yx y x yx y x

The element in the u-row and t-column is
ut7t-1

. The entries

in the table yield A . The non-e elements in the left-hand part

of the table yield B , while those on the right give B-1 . We

list these elements in two columns:
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r
yxy-lx-1 xyx-1y-1 (t) y lX 1

2 -2
y y s
_ -1

x lyxy-1 yx-ly lx (t-1)Y

xYx2Y
-1

Yx
2
y
-1x-1

tx-ly-lry-1

2 -1 -2 -1 x-1

-1 -1 -1 -1 -1
yx yx x y xy st

where the third column gives the elements of B as products of

conjugates of r = x3, s = y2, t = Cx,y] , and their inverses.

Note that I B S = 7 = (2-1)6 + 1 , as required. We leave the de-

tails of finding a positive Schreier transversal and the corre-

sponding set of free generators of N as an exercise, merely re-

marking that they are

2 2
U = {e,x,Y,x ,xy,x Y}

-1 -1 2 3 -1 -2 2 -1 2 -1 2 2 -2
B = {yxy x ,y ,x ,xyxy x ,xy x ,x yxy ,x y x } ,

respectively.

We now go on to prove a simple but tremendously useful result

(Theorem 4) about presentations, that will form the basis for

some key ideas in the next two sections.

Lemma 1. Let X,Y,Z be groups, and a : X -+ Y, S : X -> Z homo-

morphisms with a onto and such that Ker a S Ker 6 . Then there

is a homomorphism y : Y } Z such that ay = 6 .

Proof. We have the following diagram, where all the unlabelled

maps are inclusions:

Ker 6 a Y

T X iY

Ker a Z
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Now for any y c Y , choose x c X such that xa = y , and define

yy = xR . (2)

Our first task is to show that this is well defined. Thus, let

x' c X be another pre-image of y , so that x'a = y = xa . Then

x'x-l

E Ker a S Ker (3 ,

so that

(x'x-1)S = e , whence x's = xs .

Thus the definition of yy is independent of the choice of x

For any x E X , x is a pre-image under a of xa , so that

by (2),

x(ay) = (xa)y = xs .

It remains only to show that y is a homomorphism. Let

y1,y2 E Y , and let x1,x2 E X be pre-images of them. Then

(xIx2)a = xIax2a , since a is a homomorphism,

y1y2

so that x
I
x
2

is a pre-image of y1y2 . Thus by (2),

(y1y2)y = (xlx2)R

= x1Rx2R , since is a homomorphism,

= y1Yy2Y

completing the proof.

Theorem 3 (von Dyck). If R and S are subsets of the free
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group F on a set X such that R S S , then there is an epi-

morphism

0 : <XIR> -> <XIS>

which fixes X elementwise. The kernel of 0 is just the normal

closure of S\R as a subset of <XIR> .

Proof. The first assertion is a simple application of the lemma,

with a and B the natural maps

F-P F/R , F -*F/S ,

respectively. Since e is onto and aO = S , we have:

Ker 0= (Ker 3)a=Sa=Sa=Rau (S\R)a ,

and since R c Ker a , Ker 0 = (S\R)a , as claimed.

The perceptive reader will have spotted our appeal, in the state-

ment of this theorem, to a technique known as san (systematic

abuse of notation). This phenomenon is endemic and ineradicable,

and arises in the following way. Underlying any presentation

G = <XIR> , there is a free group F = <XI > consisting of re-

duced words w in X u X-1 . We like to think of G as being

generated by X and containing elements such as w , whereas in

reality G consists of cosets of the form Rw . We hope that

what is meant will always be clear from the context, and that any-

one who remains unconvinced of the need for this technique will

write out sanfree proofs of (say) Theorem 3 (above) and Theorem 4.2

(below).

Theorem 4 (Substitution Test). Suppose we are given a presen-

tation G = <X R> , a group H and a mapping 0 : X -} H . Then

0 extends to a homomorphism 0" : G - H if and only if, for all
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x c X and all r e R , the result of substituting xO for x in

r yields the identity of H .

Proof. Let F = <XI > and consider the commutative diagram:

R

nlXF Do G
H

e"

where p and i are inclusions and v is the natural homomor-

phism. Since F is free on X , 0 extends (uniquely) to a

homomorphism 0' : F -} H , and our substitution condition can be

rephrased simply as: R S Ker 0' . Since Ker 0' < F and

R = Ker v , this condition is equivalent to Ker v s Ker 0'

The existence of 0" : G -> H extending 0 is a consequence of

Lemma 1. For the converse, the existence of such a 0" entails

that

R s R = Ker v 5 Ker v0" = Ker 0'

Note that when such a 0" exists it must be unique since X

generates G . Further, if H is generated by the x6 , 8" must

be onto and IHI <_ IGI . This will be useful later on in the

quest for presentations of specific concrete groups.

EXERCISE 1. Let G = <XIR> , where

X = {x,Y} , R = {x3 ,y2,[x,Yl}

and let 8 : X -> Z6 = <ala6> be given by x8 = a2 , yO = a3

If 0' is the corresponding extension to F = <x,yl > , prove

that Ker 0' 2 R and Im 0' = Z6 . Deduce that IGI ? 6 .

EXERCISE 2. Let F = <x,yl > and N = {x3,y2,[x,yl} < F , as in

Example 1 and Exercise 1. Write down a positive Schreier trans-
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versal for N in F and use it to obtain a set of free gener-

ators for N .

EXERCISE 3. Let G = <XIR> , where

X = {x,y} , R = {x3 ,y2,(xy)2}

and let 8 : X -} S3 be given by x6 = (123) , y8 = (12) . As in

Exercise 1, deduce that IGI >_ 6 , and go through the proof of

the Neilsen-Schreier theorem with this R in the role of H .

EXERCISE 4. Prove that if G has a presentation <x,y I R> ,

then G/G' is presented by <x,y I R,[x,y]> . Can you extend this

result to the case of more than two generators?

EXERCISE 5. Consider that group F(2,6) given by

-1 -1 -1 -1
<x1,x2,x3,x4,x5,x6Ix1x2x3 ,x2x3x4 ,x3x4x5 ,x4x5x6

-1 -1
x5x6xl ,x6Xlx2 >

Prove that there is a homomorphism X : F(2,6) -} S such that

n(x1X) = n + 1 , n(x2X) = -n , n E Z

and deduce that this group is infinite.

EXERCISE 6. Prove that, for any non-negative integer r , the

subgroup

Qr= {a/rIji,aE Z , i>_0}

of the additive group Q of rational numbers has the presentation

Qr = <x0, xl , ... Ix n".. I rxi / xi-1 , V i E N> .
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EXERCISE 7. Regarding the additive group Z of integers as a

subgroup of Q and each Qr (see Exercise 6), prove that Q/Z

is isomorphic to the direct sum of the groups Qp/Z , where p

runs over the primes.

§4. Elementary properties of presentations

We collect together in this section three important appli-

cations of the Substitution Test, the first of which gives an

alternative proof of Theorem 3.1.

Theorem 1 . If m : G x G } G denotes the binary operation on a

group G , then G has the presentation <XIR> , where X is

the underlying set of G and R = {xym(x,y)-1 I x,y E G} .

Proof. Letting M be the group <XIR> , the identity map 1G

extends to a homomorphism a : M -> G by the Substitution Test.

Letting : G -> M be the 'inclusion' mapping, it is clear that

both a6 and Sa fix G . They are thus equal to 1M and 1G

respectively, proving that a is an isomorphism.

Theorem 2. If G = <XIR> and H = <YIS> are two presentations,

then the direct product G x H has the presentation

<X,Y I R,S , [X,Y]> , (1)

where [X,Y] denotes the set of commutators {[x,y]IxE X,y E Y} .

Proof. Let D denote the group presented by (1). By the

Substitution Test, the 'inclusions'

induce homomorphisms
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(The inverted commas are used in deference to the tradition that

inclusions be one-to-one.) The relators [X,Y] guarantee that

the images of 0 and centralize one another in D , whence

we obtain a homomorphism

a : G X H -> D

(g,h) i+ g0h
I

which fixes X u Y elementwise. On the other hand, the 'in-

clusion' of X u Y in G x H extends (by the Substitution Test

again) to a homomorphism S : D -> C x H with the same property.

As in the previous proof, we conclude that a is an isomorphism.

With G = <XIR> and H = <YIS> , the inquisitive reader might

be tempted to raise the question of the significance of the group

P = <X,Y I R,S> , obtained from G and H by an apparently even

more natural rule than G x H . Before answering this, we pose

another question, namely, given groups G and H , does there

exist a group D and homomorphisms a1 : D -> G , a2 : D - H such

that, for any group K and any homomorphisms B1 : K -> G ,

B2
: K - H , there is a unique homomorphism y : K -} D such that

ya1 = R1 , Ya2 = S2 ? This is an example of a universal property

(cf. the definition of free groups), and is best reduced to dia-

grammatic form:

1 al
3IYK --------- D (2)

la2

We leave it as an exercise to show that the direct product

D = G x H is the unique answer to this question. On the other

hand, the group P is the unique answer to the dual question, as

illustrated by the following diagram:
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31yP --------K
a2

H

(3)

We confine both the formulation of, and the answer to, this ques-

tion to the exercises.

Definition. If G = <XIR> and H = <YIS> , then the group

<X,Y J R,S> is called the free product of G and H , and is

denoted by G * H . The kernel of the natural homomorphism from

G* H to G x H is called the Cartesian.

The general theory of free products forms an important part of

combinatorial group theory. Though it is (sadly) beyond the scope

of these notes, we shall run across one or two interesting

examples of free products later on (see §925 and 30, for example).

We pass on to our final application of Theorem 3.4 which,

though it may appear trifling, none the less forms the basis of a

very valuable practical tool.

Theorem 3. Let F = <XI > , G = <XIR> and suppose that w,r E F

with w arbitrary and r E R\R . If y is a symbol not in X

then both the 'inclusions'

X -> <XIR,r>

X - <X,y I
R,y-1

w>

extend to isomorphisms with domain G .

Proof. As in the proofs of the previous two theorems, this is

a straightforward application of the Substitution Test. Of the

four mappings involved, three merely fix X elementwise, while
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the fourth in addition sends y to w , regarded as a member of

G by san.

The four isomorphisms of Theorem 3 yield four ways of adjusting

a given presentation <XIR> to obtain another, <X'IR'> say, of

the same group. These are called the Tietze transformations and

are defined as follows, where F = <XI > throughout.

R+ , adjoining a relator:

X' = X , R' = R u {r}

where r E R\R (normal closure in F ).

R- , removing a relator:

X' = X , R' = R\{r}

where r E R n R\{r

X+ , adjoining a generator:

X' = X u {y} , R' = R u {y-lw} ,

where y X and w E F.

X- , removing a generator:

X' = X\{y} , R' = R\{y-1w}

where y E X w c <X\{y}l > and

involving y

-1
y w

Example 1. Consider the von Dyck group

D(i,m,n) = <x,y l xk,ym,(xy)n> 9

is the only member of R
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where k,m,n are integers (usually positive). We apply a suc-

cession of Tietze transformations to this presentation in accord-

ance with the scheme set out below. The generators are omitted

since at each stage they are just the, letters involved in the

relators.

X+

R+

R-

R+

xk

xk

xk

xk

xk

Ym (xY)n

Ym (xy) n

Ym (xy)n

ym

Ym

a-lxy

a-lxy

a-lxy

a-1xy

an

an

an ay 1

in -1 n -1 t
a xy a (ay )

m
-1

n k-1 l -1
R+

R-

Y

ym

a xy
a

an

(ay )

(ay-1 )x

ay
x

x
lays

X- ym an (ayl)k

X+ Ym an (ay-1 k b-ly-1

R+ Ym an (ay-1 )k b-ly-1 bm

R-

R+

an

an

(ay-1 ) k

(ay
1)k

b-ly-1

b-1 Y-1

bm

bm (ab)k

R-
a n

b-1 Y-1 bm (ab)
k

n
-1 -1 m k

-1
1R+

R-

a

an

b Y b

bm

(ab)

(ab)k

y b

y-lb-1

X- an
bm (ab) k

This proves that D(k,m,n) and D(n,m,k) are isomorphic,

though the method is rather long and tedious. A substantial sim-

plification is achieved if we work in terms of relations rather

than relators, where a (defining) relation is obtained from the

corresponding relator by setting it equal to e . Conversely, if

w1 and w2 are words in the generators, the relation wl = w2

yields the relator w11w2 , for example. Thus, starting from

D(k,m,n) = <x,y Ixk = ym = (xy)n = e> ,
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the above computation may be informally paraphrased as follows.

Introduce the generator a = xy , so that

an = e , x =
ay-1 ,

(ay
-1)R = e

and the presentation reduces to

<a,y Ian = (ay-1 )Q = ym = e>

Replacing y-l by b and inverting the last relation we obtain

<a,b (an =
(ab)R

= bm = e>

With a reasonable amount of care, no damage is done by this loss

of precision. We give one more example, which will turn out to be

useful later on.

Example 2. Consider the group

TK = <x,y,zl x =
yzy-1,

y = zxz-1, z = xyx-1>

Using the last relation to eliminate z , we see that the first

two relations become equivalent and we have the group

B3 = <x,y I xyx = yxy>

Putting xy = a , we have

-1 -1 2y=x a , ax=x a

Finally, letting x = a-lb , we obtain the group

RM = <a,b la 3 = b 2
> .

Theorem 3 guarantees that the groups TK , B3 , RM are all iso-

morphic.
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Our final result in this section complements Theorem 3, and is

surprisingly easy to prove.

Theorem 4. Given two finite presentations of the same group,

one can be obtained from the other by a finite sequence of Tietze

transformations.

Proof. Given two such presentations

<X I R(X) = e> , <Y I S (Y) = e>

suppose that

X = X(Y) , Y = Y(X) (4)

are two systems of equations expressing the generators X in

terms of the generators Y , and vice versa. We now apply Tietze

transformations en bloc to the first presentation in accordance

with the following scheme.

X+ X,Y R(X) = e, Y = Y(X),

R+ : X,Y R(X) = e, Y = Y(X), X = X(Y)

R+ : X,Y R(X) = e, Y = Y(X), X = X(Y), R(X(Y)) = e,

R- X,Y Y = Y(X), X = X(Y), R(X(Y)) = e,

R+ X,Y Y = Y(X), X = X(Y), R(X(Y)) = e, Y = Y(X(Y))

R- : X,Y X = X(Y), R(X(Y)) = e, Y = Y(X(Y))

X- : Y R(X(Y)) = e, Y = Y(X(Y))

R+ Y R(X(Y)) = e, Y = Y(X(Y)), S(Y) = e

R- : Y S(Y) = e

Remark 1. In the course of this proof, we have added IYI gen-

erators and removed IXI , and R+, R- have been used

IXI + IRI + IYI + ISI , 2(IRI + IYI)
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times, respectively.

Remark 2. In contrast to this theorem, there is no general al-

gorithm for deciding whether two given finite presentations yield

isomorphic groups. (The apparent paradox is explained by the

fact that, in proving the theorem, we made implicit use of an

isomorphism to write down the equations (4).) This is known as

the Isomorphism Problem, and is the hardest of three problems

identified by M. Dehn. The other two are called the Word Problem

and the Conjugacy Problem and are also undecidable in general.

We shall have more to say sbout these problems later in §24.

Remark 3. We warn the reader against a popular error. Given a

presentation G = <XIR(X) = e> and new generators Y such that

X = X(Y) , it is in general false that G is presented in terms

of Y by <YIR(X(Y)) = e> . The correct presentation on the new

generators may be culled from the proof of the theorem, and is

G = <YIR(X(Y)) = e, Y = Y(X(Y))> .

EXERCISE 1. In accordance with Theorem 1, use the multiplication

table of Z3 to obtain a 3-generator, 9-relation presentation of

this group. Use Tietze transformations to show that the result is

in fact cyclic of order 3 .

EXERCISE 2. Do you recognise the group

<a,b,c I a3 = b2 = c2 = (ab) 2 = (bc) 2 = [a,c] = e> ?

What is the order of the element abc ?

EXERCISE 3. Apply Theorem 2 inductively to find a presentation

of the direct sum of r copies of the infinite cyclic group Z

(r c N) , and use Exercise 3.4 to deduce that this group is none

other than F/F' , where F is free of rank r .
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EXERCISE 4. If G and H are given groups, prove that the

direct product G x H and the free product G * H are the

(unique) groups with the universal properties encapsulated in

diagrams (2) and (3), respectively. ,

EXERCISE 5. Prove that the Cartesian of the free product

D_ = Z2 * Z2 is a cyclic group.

EXERCISE 6. For any non-zero integers k,m,n, prove that

D(-k,m,n) = D(k,m,n) = D(m,k,n) .

Deduce that D(k,m,n) depends only on the absolute values of

k,m,n and not on their order or signs. Do you recognise the

group in the case k = 1 ?

EXERCISE 7. Prove that the groups

<a,b,c,d I ab = c, be = d, cd = a, da = b> ,

<a,b,c,d,Q,f I ab = d, be = Q, cd = f, dQ = a, Qf = b, fa = c>

are cyclic and find their orders.

EXERCISE 8. Prove that the group

T = <a,b l abba = (b-1 a 2)2 = e>

is isomorphic to Z2 * Z3 .

EXERCISE 9. Find a presentation for Z6 = <xlx6> in terms of

the generators a = x2, b = x3

EXERCISE 10. Check the commutator identity (known as the Witt

identity)

CCx,y],zx][[z,x],yz]CCy,z],xy] = e ,
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and use it to prove that the group

<x,y,zI[x,y] = z,Cy,z] = x,Cz,x] = y>

is trivial.

EXERCISE 11. Let x and y be members of a group G such that

x lynx = y1°, n,m e Z . Prove that, for any ke N , x-lynkx = ymk

Deduce that the group

-1 n n+l -1 n n+1<x,yly xy=x , x yx=y >

is trivial for any n E Z .
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2 Examples of presentations

... there is an Infinite in him, which with

all his cunning, he cannot quite bury under

the finite (Carlyle: Sartor Resartus).

We shall apply the results of the previous chapter to obtain

presentations for various familiar classes of concrete groups.

There is a general method which works in principle for all finite

groups and can be crystallized into four steps. Given a concrete

group G , proceed as follows.

1. Find a suitable set X of generators for G .

2. In terms of X , write down some relations R = e that hold

in G and hope they are enough to define G .

3. Use concrete information to bound the order of G below, by

b say.

4. Working with words in X , bound the order of <XIR> above,

also by b .

By 1, 2 and the Substitution Test, we have an epimorphism

6 : <XIR> ->r G

and by 3, 4

b 5 IGI = IIm 01 = I<XIR> : Ker 01 <_ I<XIR>I <_ b

so that 0 must be an isomorphism.

For finitely-generated abelian groups, we give enough of the

proof of the Basis theorem to write down presentations, and to

obtain a simple algorithm for describing GIG' in terms of any

finite presentation <XIR> of G . Another useful consequence
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is the intuitively reasonable result that for G = <XIR> to be

finite, we must have IXI <_ IRI .

§5. Some popular groups

When classifying groups of order 8 in a first course in group

theory, the abelian groups Z2 X Z2 x Z2,Z8,Z2 x Z4 and the dihedral

group D4 (see below) come out nicely in the wash and we are left

with the following situation: the possibility of a group (or

groups) G of order 8 containing an element x of order 4

and an element y I <x> such that y2 = x2 and y 1xy = x 1

There is at most one such group, since the given information im-

plies that its elements must be

xjY
k

, 0 <_ j < 3 , 0 <_ k _< 1 ,

with multiplication table

R
x y

xi

xjy

x
j+Q

xj-9,y

with powers of x,y reduced modulo 4, 2 respectively. To show

that this does indeed define a group, one can either check the

associative law directly, or appeal to a concrete group. We adopt

the latter course and work out the example in detail to serve as

a prototype.

Example 1. Let GL(2,C) denote the group of all non-singular

2 x 2 complex matrices, and consider the subgroup Q generated

by the matrices

i 0 0 -1C = (
0 -i 1 0

where i2 = -1 . Now we have ICI = 4 and n I <> , so that
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IQI ? 8 . Furthermore, we have n2

we hopefully put

2
and n -1 En = E

-1E
, so

G = <x,y I x4 = e, y2 = x2, y-1xY = x-1>

and use the Substitution Test to obtain the epimorphism

(1)

To show that 8 is an isomorphism, we merely have to prove that

IGI <_8.
To do this, it will be sufficient to show that any element of

G is equal to a member of the set U = {xiy3 I 0 < i 5 3, 0 < j < 1)

Now it follows from the relations in (1) that U is closed under

post-multiplication by
x±1

and
y±1

. For example,

i i 2 -1 -1 i 2 -1 -1 i-1(xy)x=xyy xyy = x x x y =x y .

Thus, Uw c U for any word w in {x±1 , y±1} . Since these

words cover C (by san) and e c U , we have

G=eGcUGsU,

as required.

The group given by (1) satisfies all the requirements for our

proposed group of order 8 (above) and we have just shown that

it is isomorphic to the concrete Q - called the quaternions.

This completes the classification of groups of order 8 .

Definition 1. For n an integer ? 2 , we define the general-

ized quaternion group Q2n to be the subgroup of GL(2,C) gen-

erated by the matrices.
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0 0 -1

0 w 1 0

where w = eiTr/n E C .

Theorem 1. The generalized quaternion group Q2n is of order

4n and has the presentation

<x,Y l
x.L = y 2

, y
-1

xy = x
-1

>

Proof. Letting G be the group presented by (2), we see that

xn = y2 commutes with y , and so

xn = (xn)y = (xy) n = x-n

(2)

that is, x2n = e in G . Thus, the quaternion group Q is

just Q4 . We proceed as in the above example, and observe that

mapping x,y to ,n respectively yields a homomorphism from G

to Q2n . That IQ2nI ? 4n follows from the fact that w is a

primitive 2nth root of unity and n V Finally, the proof

that IGI <_ 4n differs from the above only in the choice of

U= {xly3 10 <- i <_ 2n-l, 0 5 j _< 1} .

Definition 2. For an integer n ? 3 , the group D
n

of sym-

3metries of a regular plane n - gon in R is called the dihedral

group of degree n .

Theorem 2. The dihedral group Dn is of order 2n and has the

presentation

<x,YIxn= y2= (xy)2= e>
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Proof. We number the vertices of the n-gon consecutively

1,2,...,n clockwise. Since rigid transformations preserve

adjacency of vertices, any symmetry is determined by its effect

on the vertices 1 and 2 , and there are n possible positions

for 1 and given this, two for 2 . Hence, Dn has order at

most 2n . On the other hand, if we let denote counter-

clockwise rotation through 27r/n about the centre 0 of the

n-gon in its own plane, and n rotation through 1< about O1

we see that the symmetries {Elr1 I 0 s i <_ n-l, 0 <_ j 511 are

all distinct. To prove this, we look at the corresponding permu-

tations (1 2...n),(2 n)(3 n-1)... of the vertices; the first

has order n and the second is not a power of the first. Now we

just proceed as in the above example, observing that, from the

last two relations in the proposed presentation,

y xy=yxy=x

as before.

Theorem 3. The symmetric group S
n

(n E N) has the presentation

Gn = <xl,...,xn-1 I R,S,T> f

where

R = {x2 11 n-l}

S={ (xixi+l) 3 I 1 <_ i< n-1}

T = {Cxi,x.] 11< i< j-1 < n-l} .

Proof. Letting G
n

denote the group so presented, we follow the

plan suggested at the start of this chapter and proceed in four

steps.
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Step 1: To find suitable generators, note just that Sn is

generated by the cycles, and that

(a1...az) = (a1a2)(a1a3)...(aIaQ) .

Letting x! _ (i i+l) for 1 <_ i <_ n-1 , we have for
1

1 < j <- n

(ij) = xixi+l...x! 2x! lx' 2...xi+lx!
J- J- J - 1

f

so that Sn is generated by the set {x! l 1 n-l}

Step 2: The rule

G
n n

X. + x!
i i

yields a homomorphism (onto by Step 1) by the Substitution Test,

since

R : x! is a transposition,
i

S : xixi+l is a 3-cycle,

T : x!,x.J are disjoint for Ii-jI ? 2

Step 3: This is just the well-known fact that IS nI > n! .

Step 4: We prove that IGnI <_ n! by induction on n . When

n = 1 , G
n

is the trivial group < I > of order 1 <_ 1.' , and

when n = 2 , Gn = <x1Ix1> which is cyclic of order 2 5 2!

We thus assume that n ? 3 and that Gn-1 <_ (n-1)! . Let H be

the subgroup of Gn generated by x1,...,xn-2 and define

y0 = e, yi = xn-l...xn-i' 1 <_ i <_ n-1 .
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Consider the subset

A = {hyi I h E H, 0 <_ i 5 n-l}

of Gn ; we shall prove that A = Gn . The hard bit (and the

crux of the whole proof) is to show that

Ax
J
. cA, 15 j <_n-1 ,

so we consider the product hyixj in six possible cases.

(i) = 0, j < n-1 : hyixj = hxj E Hy0 c A, as j < n-1 .

(ii) = 0, j = n-1 : hyixj = hexn-1 = hyl c Hyl c A .

(iii) > 0, j > n-i : hyixj
=

h(xn-l...xjxj-1...xn-i)x.

= hxn-l...x
J
.xJ.-lxJ

....xn-i' by T '

= hxn-l...x J.-lxJ.xJ.-1 ...xn-i' by R

and S

= (hxj-1)xn-l...xn-i' by
T

E Hyi S A .

(iv) i > 0, j = n-i : hyixj = hxn-l***
xn-ixn-i

= hxn-l...xn-i+l' by
R

= hyi-1 E Hyi-1 c A .

(v) i > 0, j = n-i-1 : hyix. = hx
n-1' ..x n-xJ i n-(i+1)

= hyi+l E Hyi+l S A

(vi) i > 0, j < n-i-1 : hyixj = (hx.)yi, by T

E Hyi S A .

This shows that hyixj E A , for all h E H, 0 n-1 and

1 j <_ n-1 , that is, that AxJ . c A , for all j . Because of
-

R , we have

Ax-1 = Ax . S A, 1 <_ j <_ n-1
J J
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and so for any word w in the x.
J

and their inverses, Aw s A

that is AGn 5 A . Now A contains ey0 = e , and so

G = eG c AG s A ,n n n

and A = Gn , as claimed. Now in the subgroup H , all the re-

lations (corresponding to R, S and T ) of Gn_1 hold (they are

a subset of the corresponding relations in G
n

), and so by the

Substitution Test H is a homomorphic image of Gn_1 , whence

IHI ` IGn-lI <- (n-l): ,

by induction. Then,

I G
n I = JAI = IHy0 u ... u Hyn-lI ` n.IHI <_ n.(n-l)! = n.'

as required.

EXERCISE 1. Check the details of Step 4 in the proofs of

Theorems 1 and 2.

EXERCISE 2. Use Tietze transformations to show that

<a,b,c I ab = c, be = a, ca = b>

is a presentation of the quaternion group Q

EXERCISE 3. Find a subgroup of GL(2,C) isomorphic to D
n

Can you embed Dn in GL(2,R) ?

EXERCISE 4. Let G be a finite group generated by two distinct

elements of order 2 . Prove that G is dihedral.

EXERCISE 5. By finding a suitable concrete representation,
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prove that the groups

8 2 -1 3<x,yIx =y = e, y xy=x>
8 2 -1 5

><x,ylx = y = e, y xy =x

both have order 16 . Can either of these groups be presented

with only two relations? Are they isomorphic?

EXERCISE 6. Describe the centre Z(Q2n) of Q2n , and use von

Dyck's theorem (3.3) to prove that Q2n/Z(Q2n) Dn for n ? 3

What happens when n = 2 ?

EXERCISE 7. Having observed that all the Dn are von Dyck

groups for n ? 3 , make a reasonable definition of D2 .

EXERCISE 8. The presentation for S4 given in Theorem 3 has 3

generators and 6 relations. Can you cut down on this? (cf.

Exercise 9).

EXERCISE 9. As a special case of Exercise 7, we have

D3 = D(2,2,3) = S3 . S4 is also a von Dyck group - which one?

EXERCISE 10. Prove that if are distinct elements of

order 2 in GL(2,C) , then one of them is -I . Using the fact

that scalar matrices are central, deduce that no subgroup of

GL(2,C) is isomorphic to Sn for n ? 4 .

EXERCISE 11. Prove that, for n c N ,

<xl, ...,xn I x. ( l < _ i n) , (xixj) 2 (l <_ i < j < n) >

is a presentation of the alternating group An+2
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§6. Finitely-generated abelian groups

We begin by elevating Exercises 3.4 and 4.3 to the status of

theorems, for which purpose we fix the notation

X = {xl,...,xr}, C = {[xi,x
j
] 11 <_ i < j < r}, r e N,

and by san regard the set C of commutators as a subset of any

group generated by X . Recall that the derived group (or commu-

tator subgroup) G' of a group G is the subgroup of C gen-

erated by all commutators [gl,g2]
, g1,g2 E G , and that G' is

a normal subgroup of G with abelian quotient group. C' is

characterized by the fact that, for a normal subgroup N of G

GIN abelian <_> G' s N ,

and so we sometimes write G/G' = Gab ( G abelianized).

Theorem 1. if G = <XIR> , then GIG' = <XIR,C> .

(1)

Proof. By von Dyck's theorem (3.3) on adjunction of relators, we

merely have to show that G' coincides with normal closure C of

C in G . Since the generators of <XIR,C> = G/C all commute,

this group is abelian, and so G' S C by (1). On the other hand,

G' is a normal subgroup of G containing C , whence C c G' .

Theorem 2. If F = F(X) is free of rank r , then F/F' is:

(i) given by the presentation <XIC> ,

(ii) isomorphic to the direct product of r copies of the

infinite cyclic group,

(iii) free abelian of rank r

Proof. Part (i) is just the case R = 0 of the previous theorem.

To prove that the direct product
ZXr

of r copies of Z has

the presentation <XIC> , we proceed by induction on r , noting

that C is empty when r = 1 . For r > 1 , assume that
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Zx(r-1) = <x1' xr-1I Cr-1> Cr-1 = {Cxi,xj711 <_ i < j <_ r-1} ,

whereupon

Zxr = Zx(r-1)
x Z =

Zx(r-1)

x <xrI > , say,

<XICr-l'[xi,xr7,...,Cxr-i,xr]> , by Theorem 4.2,

and this is just <XIC> .

Finally, to prove freeness, we assume that Fab is the

(internal) direct product of infinite cyclic groups generated by

xl,...,xr , in accordance with part (ii). Changing to additive

notation, every element of Fab is uniquely a Z-linear combi-

nation of xi,...,xr . Now let G be any additively-written

abelian group and 8: X -> G any mapping, and define 0': Fab , G

. E Z, 1 <_ i <- r),as follows. If x e Fab , we write x = k.x . (k

and define

r

x8' _ k.(x.8)

i=1

This clearly extends 8 and is easily seen to be a homomorphism

(cf. the proof of freeness of F(X) in Theorem 1.2); it is unique

since X generates Fab

Remark 1. From now on, we denote the free abelian group on X

by A = A(X) and continue to write it additively. That its ele-

ments are unique Z-linear combinations of elements of X (as in

the above proof) is just the abelian analogue of Theorem 1.3. Our

next step towards the Basis Theorem consists of proving the ana-

logues of Theorem 1.4 and 2.1 (Nielsen-Schreier).

Theorem 3. If X generates an abelian group G , then there is

an epimorphism 8: A(X) -} G fixing X elementwise. Every abelian

group is a homomorphic image of some free abelian group.

r

52



Proof. To prove this, we can either give an abelian version of

the proof of Theorem 1.4, or proceed as follows. If G = <XIR>

is abelian, then G = GIG' = <XIR,C> and, shifting our weight on

to the other foot as it were, we see (by von Dyck's theorem) that

G is just the factor group of A(X) = <XIC> by R .

Theorem 4 (Dedekind). if A = A(X) is free abelian of rank r

and B is a subgroup of A , then B is free abelian of rank at

most r .

Proof. We go by induction on r , noting that the case r = 1

is just a well known result of elementary group theory. Now let

r > 1 and assume the result for r - 1 . Define subgroups

H = <x1,...,xr-1> , Z = <x
r>

of A , so that H is free abelian of rank r -1 and A = H x Z

By the inductive hypothesis, B n H is free abelian - on

yl,...,ys
say, with s <_ r -1 . Furthermore,

B B+H<AZ
BnH H H

so that B/B n H is either trivial or infinite cyclic (by the case

r = 1). In the first case, B = BnH and we are done, so we as-

sume that B/B n H = <b +B n H> with b E B\H . We write

b = h + Qxr, h e H, Q E N, and claim that B is free abelian on

the set Y = {yl,...,ys,b} . To do this, we invoke the abelian

analogue of Theorem 1.3 (see Remark 1 above), noting first that

Y clearly generates B . To prove Z-linear independence of the

set Y , suppose that

s

kiyi + kb = 0 , ki,k E Z . (2)

i=l

Thus we have
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s

kkxr = k(b-h) kiyi - kh E H
i=1

whence kkxr = 0 , since H n <x> = {0} . Since k x 0 , we must
s

have k = 0 , and (2) reduces to E k.y. = 0 , and since the y.
i=l 1 1 1

are free generators of B n H , each k. =
1

0 . Thus every element

of B is uniquely a Z-linear combination of the elements of Y

which proves our claim and hence the theorem.

In order to exhibit presentations for finitely generated

abelian groups and to describe the structure of derived factor

groups of arbitrary finitely presented groups, we need to recall

the Basis Theorem to the point of exhuming the bones of its proof,

upon which grisly proceeding we now bravely embark.

As above, let A be free abelian on X = {xl,...,xr} and

U = {u1,...,un} another set of free generators of A . Corre-

sponding to the relations X = X(U) , U = U(X) in the proof of

Theorem 4.4, we have systems of equations

n
.x. = I p r

j
.J.uJ

1 1
=1
r

uj gjkxk 1 <_ J 5 n ,
k=1

where the pij,gjk are integers. Substituting (4) in (3),

uniqueness of expression yields that

n

Pijgjk = 6ik , 1 <_ i,k <_ r

j =1

(3)

(4)

In other words, the integer matrices P = (pij), Q = (qjk) have

the property that PQ = Ir . Similarly, the freeness of the

generators U guarantees that QP = In . This proves that r = n

and Q = P . Conversely, any transformation of the type (4)

with Q = (qik) invertible over Z will yield a new set of free

generators of A .

Now let B be an arbitrary subgroup of A , so that by

Dedekind's theorem B is free abelian of rank s , with s <- r

54



Letting Y = {y1,...,ys} be a set of free generators of B , we

have equations

r

yk = mk.x. , 1 <_ k <_ s ,
i=1

(5)

and B is determined by the s x r matrix M = (mki) , with re-

spect to the sets Y,X of free generators. The effect on M of

changing to generators U of A is found by substituting (3)

into (5), which yields the matrix NP =
MQ-1

. On the other hand,

if Y is changed to another set V of free generators of B in

accordance with an invertible s xs matrix T , then B is de-

termined with respect to V,X by TM , and with respect to V,U

by
TMQ-1

.

In order to make this matrix as simple as possible we invoke

the invariant factor theorem for integer matrices, which asserts

that for any s xr integer matrix M , we can find T c GL(s,Z)

Q E GL(r,Z) such that
TMQ-1

is a diagonal matrix

D = diag(d1,...,df) , with t = min(r,s) and where the di are

non-negative integers each dividing its successor, and as such

are uniquely determined by M . The di are called the invariant

factors of M , and are constructed by a sequence of elementary

row and column operations. For the uniqueness, we let h
i
(M) be

the highest common factor of the i-rowed minors of M , 1<- i<_ m ,

and observe that by basic (but nasty) linear algebra, these numbers

are invariant under pre- and post-multiplication of M by invert-

ible matrices. Thus, h.(M) = h.(D) for all i , and a little

thought shows that hi(D) = d1...di . Letting h0(M) = 1 for

convenience, we thus have di = hi(M)/hi-1(M) for 1:5i<_ m

showing that M determines the di .

Example 1. Let A be free on {x1,x2,x3} and let B <_ A be

(freely) generated by

yl = 3x1 - 3x2 ,

y2 = 2x1 + 2x2 + 2x3
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so that

f 3 -3 0

M =
2 2 2

Transforming the x.,y. respectively by

1 -5 2 -1 1

Q = 0 -2 -1 T =
2 30 -1 0

we find that

D = TMQ-1 =

and indeed,

0 6 0

h1(M) = hcf{2,±3,0} = 1

h2(M) = hcf{-6,6,12} = 6

Now let G be an abelian group, finitely generated by X say,

and regard G as a homomorphic image of A = A(X) via the homo-

morphism 8 of Theorem 3. Letting Ker 8 play the role of B

in the above, we have

G = Im 8 A/Ker 0 = A/B ,

so that with respect to suitable new sets of free generators, B

is determined by a diagonal matrix D of the above type. To be

specific, this means that G is just the free abelian group on

{u1,...,ur} factored out by the free abelian group on

{dlul,.... dsus} . Using a simple isomorphism theorem for direct

products (see Exercise 2), we see that G is just the direct

product of the groups

Zui/Zdiui Zd , 1 <_ s

1

and r-s infinite cyclic groups.
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Theorem 5 (The Basis Theorem). Given a finitely generated abelian

group G , there are integers s,n ? 0 and integers di ? 2

1 <_ i 5 s , each dividing its successor, such that

G = Z x ... X Z x Zx ... xZd d
s `_- -

n copies

Further, s, n and the di are all determined by G .

With the above notation, n = r-s and those d.
1
= 1 have been

ignored. The di are called the invariant factors, and n the

rank, of G . Combining this with Theorem 4.2, we obtain presen-

tations for all finitely generated abelian groups.

Theorem 6. Every finitely generated abelian group G has one

presentation of the form

G = <XIP,C>

where

x = {xl,...,xs+n}

d.

P {xi 1 I 1 <_ i< s}

C = {Cx1.,x
J
.1 1 <_ i < J

the di being integers ? 2 , each dividing its successor.

There now arises the natural question as to how we can compute

the rank and invariant factors of G/G' when G is a group

specified by some finite presentation <XIR> . The answer is en-

capsulated in the above discussion and runs as follows. We have

GIG' = <XIR,C> = A(X)/R ,

so we take A = A(X), B = R = <R> (as A is abelian). If
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X = {x. I
1 <_ j <_ r} and R= {wi 1 <_ i 5 s} , we just write the wi

in additive notation:

s
w. = X m..x. s

1 j=1 13 3

where m..
13

is the exponent-sum of x
3
. in w1 . , and M = (m 1.3 .)

is called the relation matrix of the presentation <XIR> . The

only difference between this M and that used above to determine

the subgroup B = <R> of A , is that the generators of B

corresponding to the rows of M may not be free. Nevertheless,

free generators do exist and can be obtained by performing el-

ementary row operations on M . This new matrix and M thus

have the same canonical diagonal form D = diag{d1,...,dQ} , with

k = min(r,s) . Note that the divisibility property of the di's

means that any l's occur at the beginning and any 0's at the

end. The invariant factors of GIG' are just the remaining

di's , and its rank is r minus the number of non-zero di's

Example 2. We compute the structure of GIG' when

G = <x,Y,z I (xyz)2 = e, x3 = y3, (zxy)4 = e>

The relation matrix here is

2 2 2 3 -3 0

M 3-3 0 2 2 2

4 4 4 0 0 0

via elementary row operations. Using Example 1 above, the in-

variant factors of M are 1,6,0 and so GIG' has one invariant

factor, namely 6 , and rank 3-2 = 1 . Hence, GIG' = Z6 X Z .

Example 3. The presentation

G = <x,y,zI xy = x 1y4,
yz = y-1 z4, zx = z-1x4>
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has relation matrix

2 -4 0

M= 0 2 -4
-4 0 2

We clearly have h1(M) = 2, h2(M) = 4 and h3(M) = -det M = 56 .

Hence,

GIG' = Z2 X Z2
x Z14

We conclude this chapter and pave the way for the next with

the following intuitively reasonable result.

Theorem 7. If G = <XIR> is a finite presentation of a finite

group G , then IXI <_ IRI .

Proof. To prove the contrapositive assertion, assume that

IXI > IRI , so that the relation matrix has fewer rows than

columns. It follows that GIG' has fewer invariant factors than

generators and thus is infinite.

EXERCISE 1. Let F be a free group of rank r . Use diagrams

to give a direct proof that F/F' is free abelian of rank r .

EXERCISE 2. Let Hi,Gi be groups with H. < Gi , i = 1,2

Prove that H1 X H2 < G1 X G2 and that

Gl X G2
,.. G1 G2=-x-

H1 x H2 H1 H2

Generalize this to a direct product of n groups, n c N .

EXERCISE 3. Let F = <XI > be a free group of finite rank n

and G = <XIR> a group of finite order g . Let U be a (right)

transversal for H = R in F . Prove that the g.IRI cosets

{H'u-1ru I u e U, r e R}
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generate H/H' , and use the Nielsen-Schreier theorem to derive

an alternative proof of Theorem 7.

EXERCISE 4. Write down a relation matrix for the standard

presentation of S4 (see Theorem 5.3) and use it to compute Sob

EXERCISE 5. Let A be the (additively-written) free abelian

group in {x,y,z} , and B the subgroup of A generated by

{21x + 18y + 15z, 9x + 6y + 15z, 12x + 18y + 6z}

compute the invariant factors of A/B

EXERCISE 6.

(i) Determine the structure of G/G' when G is the group

<x,Y I y-lxy = x r > , r e N.

(ii) Compute the order of G/G' when G is given by

xy =
yb-2X xa-2z-lxa+2>

>

where a,b,c are non-zero even integers.

(iii) Determine the structure of G/G' when G is the Fibonacci

group

F(2,n) = <x1,...,xn I x1x2 = x3, x
2
x
3
= x4,...,xnx1 = x2>

for n = 5,6 . [Hint: Use Tietze transformations to reduce the

number of generators.]

(iv) Find a formula for the order of the derived factor group of

F(2,n) in terms of the Lucas numbers

1,3,4,7,11,18,...
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(v) Describe GIG' when G is the von Dyck group D(f,m,n) .

(vi) Let him that hath understanding find the order of the group

G = <x,Y,z,t I x3Y7 = y4 x7 = z3 t5 = t4 z6 = [x,z] = e>

[Hint: It is the number of a man.]
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3 Groups with few relations

Fate chooses your relations, you choose your

friends (Delille: Malheur et pitid)

We have just shown (Theorem 6.7) that for a finite group

G = <XIR> , we must have IXI <- IRI , whence finite groups have

non-positive deficiency, in the following sense.

Definition. We define the deficiency of a finitely presented

group G by

def G = max{IXI - IRI J all finite presentations <XIR> of C} .

Definition. For a finite group G = <XIR> , the (Schur) multipli-

cator of G is defined by

M(G) =
F' n R

,

[F, R]

where R is the normal closure of R in F = F(X) .

Among other things, Schur proved in 1907 that M(G) is

(i) an invariant of G , i.e. independent of the finite presen-

tation <XIR> ,

(ii) a finite abelian group,

(iii) generated by -def G elements.

Though we shall shed some light on these and other results

later, their proofs are beyond our present scope. For the present,

we concern ourselves with finite groups of deficiency zero, noting

that these must have trivial multiplicator. The class of finite

groups with trivial multiplicator but non-zero deficiency was

shown by Swan to include some soluble groups; whether it contains

any nilpotent groups is an unsolved problem. We content ourselves
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here with the problem of exhibiting certain finite groups of

deficiency zero, hereafter referred to as interesting groups.

§7. Metacyclic groups

We have so far encountered only two types of interesting

groups, namely the cyclic groups Zn (Theorem 3.2(ii)) and the

quaternionic groups Q2n (Theorem 5.1). The latter are sometimes

referred to as dicyclic groups and are special cases of metacyclic

groups. These are best understood in the context of Chapter VI as

group extensions, of which they comprise an important special case.

Definition. A group G is called metacyclic if it has a normal

subgroup H such that both H and G/H are cyclic.

In the case where G is finite, we can thus assume that

H = <x> = Zm, G/H = <Hy> - Zn

with x,y E G , m,n E N . Since H is a normal subgroup of

index n , both y-lxy and yn must belong to H , say

(1)

y-lxy = xr , yn = xs , (2)

where r,s are integers with 1 s r, s s m . Now it follows from

the first relation of (2) that for a,b E Z , b >_ 0 ,

-b a b arby x y = x (3)

(see Exercise 1), so that the second relation of (2) implies that

-s s -n n rx=x xx = y xy =x
n

whence, rn = I (mod m) , since lxi = IHI = m . Similarly, we

have

s n y-1 n -1 s rsx= y = y y= y x y= x
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so that rs = s (mod m) . We are now in a position to write down

presentations for all finite metacyclic groups.

Theorem 1. Consider the group

G = <x,y I xm = e ,

y-1xy
= xr, yn = xs>

where

m,n,r,s E N , r,s <_ m

and

nr 1 , rs = s (mod m)

Then N = <x> is a normal subgroup of G such that

n .N Zm , G I N Z

(4)

(5)

Thus, G is a finite metacyclic group, and moreover, every finite

metacyclic group has a presentation of this form.

Proof. To prove that N < G , write any member w of G as a

word in x,y . Since xm = e and yn = xs , we can write w as

a positive word and consider it as an alternating product of

syllables of the form xi,y3 with i,j E N . Now conjugation of

any power of x by either of these again yields a power of x

by the consequence (3) of the relation y-lxy = xr . Hence

Nw c N for all w E G and N < G . It now follows from Theorem

3.3 that GIN is given by adjoining the relation x = e to the

presentation (4), and this plainly yields Zn .

While we know already that N is a factor group of Zm , it

is a non-trivial matter to prove that these groups are actually

isomorphic. To do this, consider the set C of ordered pairs

(i,j) where i is an integer with 0 <- i <_ n-l and j is a
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residue class modulo m . We define a binary operation on C by

setting

(i+k, k+jr
k

) , if i+k < n

(i+k-n, k+jrk+s) , if i+k ? n

where r and s are as in the statement of the theorem. We

(6)

claim that C is a group, first observing that (0,0) is an

identity, (0,j)-I = (0,-j) and for i > 0 , it follows from (5)

tha t

(i,j)-1

=
(n-1.-jrn-i-s)

Checking the associative law is rather tedious, and we merely ob-

serve that because of (5), the product of (i,j),(k,k),(a,b) is

equal to

(i+k+a,b+tra +jrk+a
) ,

(i+k+a-n,b+kr a+jr k+a
+s)

(i+k+a-2n,b+fr
a
+jr

k+a
+2s) ,

according as [(i+k+a)/n] = 0,1,2 respectively, and is thus in-

dependent of the bracketing. Now in C ,

(i,k) = (i,0)(0,k) = (1,0)1(0,1)f

so that (1,0) and (0,1) generate C . Substitution of these

for y and x respectively in the relations of (4) yields

identities, so that C is a factor group of G by the

Substitution Test. Hence C is a concrete realization of G

and INI = m as required. The last part of the theorem has

already been proved above.

While this theorem gives a description of any finite metacyclic

group in terms of the four parameters m,n,r,s , it is not a

classification theorem. In fact, the problem of when two groups

of the type (4) are isomorphic is unsolved in general, though the
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special case when mn is a prime-power has recently been dealt

with by F.R. Beyl.

We see from the presentation (4) that def G is either -1

or 0 and so M(G) must be cyclic by the classical results of

Schur mentioned in the introduction to this chapter, and by the

same token, M(G) is trivial if def G = 0 . That the converse

holds for finite metacyclic groups was shown by J.W. Wamsley in

1970, who gave a 2-generator 2-relation presentation when

M(G) = E . A slicker version was given 3 years later by Beyl,

and we describe this now.

There are two problems involved:

(i) to compute IM(G)I in terms of m,n,r,s , and

(ii) to define G by two relations when M(G) = E .

We shall give a paraphrase of (i) and prove (ii) in full

(Theorem 2 below). To get at M(G) , we need to take a closer

look at the congruences (5). From the first of these, it follows

that

h = m
(m,r-1)(m,l+r+...+rn-1)

is an integer. From the second congruence, there is an integer

k such that

s = km = k.m/(m,r-1)
r-1 (r-1) /(m,r-1)

where k is an integer since m/(m,r-1) and (r-l)/(m,r-l) are

coprime. By changing generators and using elementary number

theory, k can be replaced by (k,h) , so that we can take

s = km/(m,r-1) in (4), with k a divisor of h . Beyl's main

result now asserts that k is nothing other than IM(G)I .

Granting this, the deficiency problem for finite metacyclic groups

is solved as follows.

Theorem 2. Let

G = <x,y I xm = e ,

y-lxy
= xr, yn = xs>
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where m,n,r,s E N and

nr 1 (mod m) and s = m/(m,r-1)

Then G is presented, in terms of the same generators x and

y , by

<x,Y I Yn = xs, [y,x t] =
x(m,r-l)>

where t is a certain integer.

Proof.

(i) We first construct an integer t such that the second

relation of (7) holds in G . To this end, let

(m,r-1) = u(r-1) + vm ,

so that (u,s) = 1 . Now let w be the largest factor of m

coprime to u , and put t = u + ws . Now modulo m ,

(m,r-1) - u(r-1) - t(r-1) ,

since s(r-1) is divisible by m . Hence, in G

[y,x t] _
(y-lxty)x t = x(r-1)t = x(m,r-1)

(7)

and the relations of (7) hold in G .

(ii) We now assume the relations of (7) and show that they

define G . Armed with the knowledge that xs commutes with y

and [y,x t] commutes with x , we see that

is -1 is -1 t s -t t s -t s isx = y x y = (y x y) _ ([y,x ]x ) = Cy,x I x

and so

xm =
x(m,r-1)s = [Y,x t]s

= e
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To complete the proof, we first need to show that t and m are

coprime, so assume (for a contradiction) that p is a prime fac-

tor of both. Since p divides m , it divides exactly one of

w and u . But p divides t = u + ws , so it cannot divide w

Hence, p divides u and s contrary to the fact that (u,s) = 1.

Thus, there is an integer k such that kt =_ I (mod m) , and we

have

Cy,x
lI

=
Cy,x-ktI

=
(Cy,x-t]xt)kx -kt = [y,x-tI k

= xk(m,r-1) = xkt(r-1) = xr-l

Hence xy = xr , and the three relations of C follow from the

two relations of (7).

EXERCISE 1. Let x and y be members of a group C such that

y-1xy = xr , r E Z .

Prove that for a,b c Z with b ? 0 ,

-b a b arb

EXERCISE 2. (Cf. Exercise 6.6(i).) Consider the 'archetypal

metacyclic group'

G = <x,y l y-1xy = xr>

Prove that every element in G can be written in the form

ii
-k

y x y , i,j,k E Z, i,k >_ 0

Identify the elements of G' , and deduce that G' is abelian.

Do you believe that G really is metacyclic?

EXERCISE 3. A group G is called split metacyclic if it has a
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cyclic normal subgroup with a cyclic complement. Such a group

thus has a presentation of the form

G= <x,yIxm=e , xy=xr, yn=xm>

Use Beyl's criterion to prove that M(G) is cyclic of order

(m,r-1)(m,l+r+,
+rn-1)/m

EXERCISE 4. Use the result of the previous exercise to compute

the multiplicator of the dihedral group Dm of degree m . Write

down a 2-generator 2-relation presentation of Dm when m is odd.

EXERCISE 5. Compute M(Zm x Zn) , m,n e N .

EXERCISE 6. Let p be an odd prime, a,b e N and k e Z such

that (k,p) = 1 . Prove that

Q a+b+l(1+kPa)Pb= 1 + kPa+b +
P

with k E Z .

EXERCISE 7. Use Exercise 6 to find a deficiency-zero presentation

of the group

pa+b
-1 l+pa pbG = <x,yIx = e, y xy = x , y = e>

when p is an odd prime and a,b e N .

EXERCISE 8. Prove that the groups C of Exercise 7 exhaust the

class of split metacyclic groups with odd prime-power order and

trivial multiplicator.

EXERCISE 9. Prove that the group

<x,y Ixm = yn = Cx,yl>
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is cyclic when (m,n) = 1 .

§8. Interesting groups with three generators

Twenty years ago, the list of known interesting groups com-

prised

(i) cyclic groups,

(ii) certain metacyclic groups (see §7) studied by Schur,

(iii) certain derivatives of the von Dyck groups (see Example 4.1)

studied by Miller.

Now all these groups are 2-generated, and the question naturally

arose as to whether there were any interesting groups needing 3

generators or more. The first examples were provided by J.

Mennicke in 1959, who showed that the groups

N(a,b,c) _ <x,y,z I
y-lxy = xa, z-1yz = yb, x-1zx

= zc>

are finite in the case a = b = c ? 3 . Eleven years later,

Wamsley showed that the two classes of groups

z a z
±l

b c
W+(a,b,c) = <x,Y.zI x = x , y = y , z = Cx,Y7>

were interesting provided (a-1)(b-1)c x 0 , this work being based

on the groups Mac(a,b) = W-(a,b,l) discovered by I.D. Macdonald

in 1962. While our current stock of interesting groups with 2-

generators is very large, the list of those needing 3 generators

is fairly short. It consists of the 3-generator groups in the

above three classes of Mennicke and Wamsley, together with the

J(a,b,c) = <x,y,z lx
y

= y
b-2

x
-1

y
b+2

, y
z

= Z
c-2

y
-1

z
c+2

x a-2 -1 a+2
z = x z x >

where a,b,c are non-zero even integers (see Exercise 6.6(ii)).

Since the J(a,b,c) are the easiest to analyse we investigate

this class now, observing that similar methods apply to the other

three classes.

Let G = J(a,b,c) . Our first step is to conjugate the first
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relation by y :

2 b-2 y -1 b+2 -4 4 y4xy =y (x) y =y xy =x

so that x commutes with y2 (write x - y2). From the other

two relations, we have

2 2Y - z , z "' x (1)

and we deduce that the subgroup H = <x2,y2,z2> of C is abelian.

Furthermore, we deduce from the original relations that

xy = X-1
y

2b,
y
z

= y
-lz2c zx = z-lx2a (2)

>

and as a consequence,

(x 2)x = x2, (x
2)y = x-2

y
4b (x2) z = x2

all belong to H . Since the conjugates of x2 by
x-1,y-1,z-1

are equal to its conjugates by x,y,z respectively (H is

abelian), we see that (x2)w E H for any w E G . Similarly,
2 w 2 w

(y ) (z ) E H and we deduce that H is normal in G . By

Theorem 3.3, a presentation for G/H is given by adjoining the

relations x2 = y2 = z2 = e to those defining G , and after a

couple of Tietze transformations, we have

G/H = <x,y,z
I x2 = y2 = z2 = (xY)2 = (Yz)2 = (zx) 2 = e>

Thus, G/H = Z2 x Z2 x Z2 and I G:H I = 8 .

We now apply the relations (1) and (2) together with the fact

that x2 - y2 to compute that

[[x,y7,zxI =
[x-2y 2b ,z-1x2aI

=
[y2b,z-17

=
[y2b,z] = y-2b(yz)2b

= Y-2b (Y-lz2c)2b = y-4b z4bc

Substituting this and its companions into the Witt identity (see
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Exercise 4.10), we have:

e = [[x,y],zx]CCz,x],yz]CCy,z],xyl

-4b 4bc -4a 4ab -4c 4ca= y z . x y . z x

4a(c-1) 4b(a-1) 4c(b-1)X y z

since x2 ,y2,z2 all commute. Since y2 ,z2 commute with y so

does
x4a(c-1)

, and we have

x4a(c-1) = (x4a(c-1))y = (Xly2b)4a(c-1) = x-4a(c-1)y8ab(c-1)

Hence

8a(c-1) 8ab(c-1)x
= y

and similarly,

y8b(a-1) = z8bc(a-1) z8c(b-1) = x8ca(b-1)

Using each of these three relations, we finally obtain:

x8a(c-1)(a-1)(b-1) = y8ab(c-1)(a-l)(b-l)

= z8abc(c-1)(a-1)(b-1)

= x8a2bc(c-1)(a-1)(b-1)

showing that x has order dividing

8a(c-l)(a-1)(b-1)(abc-1)I , (3)

which is non-zero. Thus x2 has finite order and similarly, so

do y2 and z2 . Since x2 ,y2 ,z2 all commute, it follows that

H = <x2,y2,z2> is finite. Since G/H = Z
2 x

Z
2 x

Z2 needs 3

generators, so does G , and we can state the following theorem.
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Theorem 1. Let G be the group

I xy =
yb-2x-1yb+2 yz = zc-2y-1zc+2I zx = xa-2z-1xa+2>

,

where a,b,c are non-zero even integers, and let

H = <x2,y2,z2> <_ G . Then H is an abelian normal subgroup of

G with G/H elementary abelian of order 8 . The order of

G is a divisor of

512labcl.l(a-1)(b-1)(c-1)(abc-l)I3 (4)

The bound for IGI is obtained by multiplying by 8 the

product of the bounds for Ix2I,Iy2I,Iz2I obtained from (3) and

its analogues. Even in the simplest case, namely when

a = b = c = 2 , this yields a 7-digit number, while the order of

G in this case is 7.211 (the bound obtained by Wamsley). We

must defer until the next chapter the method for computing IGI

exactly (see Exercise 12.10), merely observing that the correct

value is

IGI = 28labc(abc-1)I . (5)

We have proved that G is a metabelian group, that is, a group

with abelian derived group. Recall that a group is called nil-

potent if it has a finite chain of normal subgroups

GGI G2 > ... > Gn+l = E

with Gi/Gi+1 s Z(G/Gi+1) for all i . The class of a nilpotent

group is the least value of n for which such a chain exists, so

that for example, nilpotent groups of class 1 are just abelian

groups. Simple commutator calculations show that J(a,b,c) is

nilpotent if and only if labcl is a 2-power, whereupon its

class is equal to 3 + log2 max{lal,lbl,lcl) .

Whether or not there is an interesting group that needs 4

generators is an unsolved problem; the best we can do is 4 gener-
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ators and 6 relations. That all interesting nilpotent groups are

3-generated follows from the Golod-Safarevic theorem (see §21),

but very little is known about the general case.

EXERCISE 1. Use (5) to compute the order of J(a,b,c)' (see

Exercise 6.6(ii)).

EXERCISE 2. By studying relations derived in the proof of

Theorem 1, try to reduce as far as possible the bound (4) for the

order of J(a,b,c) .

EXERCISE 3. When do abelianized Mennicke and Wamsley groups

need 3 generators? Write down necessary and sufficient conditions

on a,b,c in each case.

EXERCISE 4. Identify M(a,a,a) when a = 0,1,2 .

EXERCISE 5. Use the Witt identity to prove that x,y,z each

have finite order in M(a,b,c) when ja-lI,lb-lI,Ic-1I are all

at least 2.

EXERCISE 6. Prove that every element of M(a,b,c) can be

written in the form xlyJzk , i,j,k E Z . Deduce that M(a,b,c)

is finite when Ia-lj,Ib-lI,Ic-lI are all at least 2, and write

down a bound for the order in this case.

EXERCISE 7. Find a finite group that needs 4 generators and can

be defined by 6 relations.

§9. Cyclically presented groups

Cyclically presented groups comprise a potentially rich source

of interesting groups, and indeed we have already looked at several

examples of this type of group. We now give a formal definition,

though the name is self-explanatory.

Definition 1. Let F = <xl,...,xnI > and let 6 be the auto-
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morphism of F induced by permuting the subscripts of the free

generators in accordance with the cycle (1 2 ... n) E S
n

For

any reduced word w E F , the cyclically presented group Gn(w)

is given by

Gn(w) = <xl,x2,...,xn 1
w,w6,...'wen-1>

Since cyclically presented groups have non-negative deficiency,

Gn(w) is interesting if and only if it is finite. Examples of

such groups appearing in the previous section are

M(a,a,a) = G3(x21x1x2x-a)
1

J(a,a,a) = G3(x1lxa2-l x1 x2+l)

[x x I
Mac(a,a) = G2(xl 1 2

x_la

Further examples are provided by the Fibonacci groups

F(2,n) = Gn(x1x2x31) of Exercise 6.6(iii), and these are a

special case of the following class.

Definition 2. For r,n E N with r ? 2 , the Fibonacci group

F(r,n) is defined as the cyclically presented group

F(r,n) = Gn(xl,...,xrxr+l) I

where subscripts are understood to be reduced modulo n to lie

in the set {1,2,...,n} .

The following table gives an idea of what the F(r,n) look

like for small values of r and n . In the (r,n) place is

written the order of F(r,n) , or the isomorphism type where

appropriate. The gaps in the table correspond to gaps in our

knowledge. We have already computed some of these entries and

others figure among the next set of exercises. The hardest to

identify is probably Campbell's group F(3,6) - one of a

bewildering array of cyclically presented groups of order 1512

studied by C.M. Campbell and E.F. Robertson - and this is the
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only finite entry in the table which is not metacyclic.

n
r 1 2 3 4 5 6

2 E E Q Z5 Z11

3 Z2 Q z
2

- Z22 1512

4 z z 63 Z ro

3 3
3

5 Z4 24 - 624 Z4 -

6 Z5 Z5 Z5 125 7775 Z5

7 Z6 48 342 - 117648

It is known that for fixed r , the F(r,n) are eventually

infinite; it is a nice exercise in small cancellation theory (see

Chapter VII) to prove that F(r,n) is infinite for n >5r . The

case r = 2 is thus almost completely decided. A machine implemen-

tation of Todd-Coxeter coset enumeration (see Chapter IV) shows

that F(2,7) = Z29 , while A.M. Brunner has proved that F(2,8)

and F(2,10) are both infinite (see Exercise 10 and Exercises

20.16-19). This leaves one group, namely F(2,9) , and the best

we can say about this is as follows. By using a formidable array

of algorithms and a considerable amount of ingenuity, G. Havas,

J.S. Richardson, L.S. Sterling, a Univac 100/42 and a DEC KA 10

have proved that F(2,9) has order at least 152.5741

We now turn to the study of the Gn(w) in general, and con-

centrate on describing the structure of A
n
(w) = G

n
(w)ab by means

of the theory in §6. In particular, we shall find necessary and

sufficient conditions for An(w) to be (i) infinite, (ii) perfect,

and to do this we need the following definition.

Definition 3. The polynomial f(t) = f n(t) associated with
,w

the cyclically presented group G = Gn(w) is given by

f(t)

=

a
i-1ti-1 ,

i=1

where ai is the exponent sum of xi in w , 1 <_ i _< n .

Since the n permutants of w under powers of 0 (see

(1)
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Definition 1) comprise a set of defining relators for Gn(w) , it

follows that the matrix

/

al a2 a3 ... an-l
an

C =

an aI a2 ... an-2
an-l

\ a2 a3 a4 ... an aI /

(2)

is a relation matrix for An (w) . This is a circulant matrix and

its determinant is known.

Theorem 1. With the notation of (1) and (2)

n

det C = R f(wi)

i=1

where w.
i

ranges over the set of complex nth roots of unity.

Proof. Let w be a primitive nth root of unity, and let

V = (vij) be the Vandermonde matrix given by vij = Wij . Now

the (i,j) entry of the product CV is equal to wi f(w3) ,

whence

n
det(CV) R f(wj)]det V

j=1

But the (i,k) entry of V2 is equal to

n
w(i+k)j -

J =l

0 , if i+k x n,2n ,

n , if i+k = n,2n ,

(3)

so that V2 is just n times a permutation matrix. In particu-

lar, V is non-singular, so the theorem follows from (3).

In accordance with the theory of §6, we now have a formula for

the order of A(w) .

Theorem 2. If f is the polynomial associated with w , then

IA (w) I = ± R f( )
n n=1

(4)
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Note that the sign in (4) is chosen so as to make the right-

hand side positive, and that we observe the convention usual in

this context that 0 = - .

Theorem 3. The following three assertions are equivalent:

(a) An(w) is infinite,
n

(b) f(t) has a root in common with t - 1 ,

(c) f(t) is a zero-divisor in the ring Z[t]/(tn-1)

Proof. The equivalence of (a) and (b) follows at once from (4).

Assume (b) and let w be a common root. Suppose w is a primi-

tive kth root of unity (1 5 k _< n) and let k(t) be the kth

cyclotomic polynomial. Since f(t) and to -1 are both integral

polynomials, they are both divisible by k(t) :

ot -1 = k(t)p(t) , f(t) = k(t)q(t)

say, where p(t),q(t) E Z[t] . It follows that f(t)p(t) belongs

to the ideal (tn-1) , and since the degree of p(t) is less than

n , (c) follows. Conversely, let (c) hold so that there are

polynomials p(t),g(t) c Z[t] such that

f(t)p(t) = (tn-1)g(t) ,

with p(t) not divisible by to -1 . Now the factorization

ot - 1 = II k (t)
kin

into irreducibles shows that for some k , ¢k (t) is not a divisor

of p(t) . By uniqueness of factorization, k(t) is a divisor

of f(t) , and assertion (b) follows.

Theorem 4. An(w) is trivial if and only if f(t) is a unit in

the ring Z[t]/(tn-1) .

Proof. Suppose first that f(t) is a unit, and let g(t) E Z[t]
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be such that

f(t)g(t) = 1 (mod(tn-l)) (5)

We can of course assume that g(t) has degree at most n-1 , and

it is a consequence of Theorem 1 that any such polynomial has the

property

II E Z . (6)
,n=l

That A(w) is trivial now follows from (4), (5) and (6). To

prove the converse let F = <xl,...,xnI > and consider the

mapping

Tr: F -- Z[t]/(tn-1)

u H h(t) + (tn-1)

where h is the polynomial associated with the word u . It is

clear that 7 is an epimorphism of groups, and that Ker 7 ,

being the set of words with all exponent-sums zero, is just F'

Now let R consist of w and its permutants under (1 2 ... n).

Then Gn(w) = FIR , and An(w) is trivial if and only if the

composite mapping

a: R
inc

F '* Z[t]/(tn-1)

is onto, since both conditions are equivalent to F = F'R . But

Im a is just the subgroup generated by the set Ra , namely, by

the cosets containing

f(t),tf(t),...,tn-lf(t) .

Thus, when An(w) is trivial, we can find integers b0' ...,bn-1

such that
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n-1
1 - Y bit1f(t) (mod(tn-1))

i=0
n-1

whereupon the polynomial bitl is the desired inverse for

f(t) , modulo
(tn_1) i=0

Focussing our attention once more on the Fibonacci groups, we

put A(r,n) = F(r,n)ab , and recall that r,n e N with r ? 2

Letting fr(t) = f(t) be the polynomial

r-1
f (t) = tr - I ti

i=0

we see from (4) that

IA(r,n) I = ± II f()
n

Theorem 5. A(r,n) is always a finite group.

(7)

Proof. By Theorem 4, we must show that the polynomial f(t)

of (7) can never vanish on a root of unity. Suppose for a contra-

diction that lies on the unit circle and that f(&) = 0

Then

i=0

and so, multiplying by (1-E) ,

r - r+l = l - r

that is

2,r=1+ r+1

Taking moduli

1 +
l,r+ll = 2 = 21 jr = 11 +,r+ll

(8)

80



which implies that
r+1

is real and non-negative. Hence
r+l = 1 and by (8)

Er
= 1 also. So = 1 and thus

0 = f(1) = 1 -r ,

which is the desired contradiction.

We proceed to compute the value of IA(r,n)I exactly in cer-

tain special cases. To this end, let

r = kn+s , 0 <_ s < n .

Theorem 6.

(i) if s x I , IA(r,n)I = s-1 IA(s,n)I

(ii) If s = 1 , IA(r,n)I = n(r-1)

(iii) If s = 0 , IA(r,n) I = r -1 .

(iv) If s = n-1 , IA(r,n)I =
(r-1)2n-1

(v) if s = n-2 , IA(r,n)I = (r-1)(2+(-1)n+1)/3

Proof. All these formulae are consequences of equation (7), and

their proofs depend on the fact that if n = 1 , then

fn , if = 1 ,
h()

0 , otherwise ,

where h(t) is the polynomial 1 + t + ... + to-1 . Thus,

IA(r,n) I = ± (r-1) II (1 + + ... + s-1 -
5) (9)

,n=1
xl

(i) follows at once from this. When s = 1 , the right-hand side

of (9) becomes

± (r-1) II (1-E) (r-1)h(1)
En=1

1

which proves (ii). When s = 0 , the sum 1 + E + ... + Cs-1 in

the right-hand side of (9) is empty, and (iii) follows. For (iv),

note that

81



1 + + ... +
Cn-2 - Cn-l =

when n = 1 As for (v),

+ C + ... + n-3 - n-2 = n-1

and the absolute value of this is just 2 +
I I

. The right-hand

side of (9) is therefore equal to

± (r-l)h(-2) ,

which yields assertion (v).

We now examine the behaviour of cn = IA(r,n)I for fixed r

and increasing n .

Definition 4. If f,g are two monic polynomial in Z[t] , the

complex number

g * f = II fM
g(0=0

is called the resolvent of f and g .

It is clear that g * f = ±f * g , and so formula (7) can be

rewritten in the form

cn = II

In-lI
,

f M =0

which we now use to prove our next result.

Theorem 7. For n large enough, cn < cn+l

Proof. We examine the behaviour of the rational complex function

n+lqn(z) = z n - 1
z - 1

as n tends to infinity. First of all, if Izi > 1 ,
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q (z)I >

IzIn+l

- 1 = IzI
-

IzI + 1

n IzIn + 1 zIn+1

which is increasing and exceeds 1 eventually. If on the other

hand IzI < 1 ,

1 - IzIn <_
Iz n -11

<_ 1 + IzIn

so that Iq
n
(z)I tends to 1 in this case. Now in the proof of

Theorem 5, we showed that f has no root of modulus 1 , and so

these are the only two cases that can arise in studying the

limiting behaviour of

c

IT Iq ( ) I .cn f(0=o n

Thus to prove the theorem, it is sufficient to show that f has at

least one root outside the unit circle, and this follows at once

from the fact that the product of its roots is ±1 .

Theorem 8. Given a group G , there are at most finitely many

pairs (r,n) such that G = F(r,n)

Proof. If GIG' is infinite, the result follows from Theorem 5.

So assume that GIG' is finite - of order m say - and suppose

that G = F(r,n) . Adjunction of the relations xl = x2=...= xn

shows that G has the group F(r,l) as a factor group and since

F(r,l) = Zr_1 , we must have r <_ m +1 . So there are at most

finitely many r such that G = F(r,n) , and for each of these,

there are at most finitely many n with cn = m , by Theorem 7.

This proves the theorem.

EXERCISE 1. Prove that xn ... x1 = e in F(2,n)

EXERCISE 2. Prove that [xl,x2]2 = e in F(2,n)

EXERCISE 3. Prove that F(n,n+l) F(2n-l,n) for all n >_ 2

n+l
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EXERCISE 4. Show that F(r,n) = Zr_l when n is a divisor

of r .

EXERCISE 5. Show that the cyclic group of order 2s-1 - 1 appears

at least s times among the F(r,n) .

EXERCISE 6. Show that for all s ? 1 , F(2s+1,2) is a meta-

cyclic group of order 4s(s+l) .

EXERCISE 7. Prove that when r - I (mod n) , F(r,n) is a meta-

cyclic group of order at most n(rn-1)

EXERCISE 8. Prove that every finite group is a factor group of

some F(r,n) .

EXERCISE 9. Define F(r,n,k) to be the group Gn(w) when w

is the word xl ...xrx-1 . Find necessary and sufficient con-r+k
ditions for F(r,n,k) to have an infinite abelian factor group.

EXERCISE 10. Use the matrices

-1 1 0 0 1 0

Al = -1 0 0 , A2 = 0 0 1

0 0 1 1 0 0

to show that the group F(2,10) is infinite.

EXERCISE 11. Prove that the automorphism 0 of F(r,n) induced

by (12...n) has order equal to n when n is sufficiently

large relative to r .

EXERCISE 12. Prove that, in F(2,n) , we have the relation

xl ... xn = e , or (x1 ...x) 2 = e

according as n is even or odd.
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4 Presentations of subgroups

Write the vision, and make it plain upon tables,

that he may run that readeth it. (Habakkuk)

Suppose we are given a presentation <XIR> for a group G

As might be expected, the derivation of a presentation for a

specified factor group of G is easy enough (Theorem 3.3). By

contrast, the corresponding problem for a subgroup H of C is

no simple matter, and is in general very undecidable. As usual

we dodge the pathology by confining ourselves to propitious cases,

and describe the general method in §12. The whole thing hinges on

the derivation of a certain Schreier transversal U , in terms of

which we obtain free generators for H (as in Lemma 2.3). A

simple trick gives relators for H in terms of the generators X

of G and these must be rewritten as words in the free generators

of H . If necessary, we can then perform Tietze transformations

(Theorem 4.3) on the resulting presentation to reduce it to a more

suitable form.

The method of calculating U varies according to what H is

and how it is specified. For example, the method of §6 (see

Example 6.2) contains an algorithm for computing U in the case

where G is finitely generated and H 2 G' . The best general

method, however, is that invented by J.A. Todd and H.S.M. Coxeter

in 1936 and known as coset enumeration. It works in any specific

situation when H is the subgroup generated by a set Y of words

in X , provided only that IXI , (RI , JYJ and IG :HI are all

finite. We describe it in §§10, 11.

The method of coset enumeration has had a highly successful

career, particularly since the advent of high-speed computing

machines, and has been used among other things for identifying new

finite simple groups. The process has been implemented on many

machines throughout the world, sometimes in conjunction with other
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methods like those mentioned in the previous paragraph. In defer-

ence to this, we devote §13 to describing a refinement of the

method, due in this form to W.O.J. Moser, which yields a presen-

tation for H by means of a single computation (by hand or

machine).

§10. A special case

The method described below can be applied to any specific fi-

nite presentation G = <XIR> , and always works provided IGI is

finite. It not only yields such information as

the order of G ,

a faithful permutation representation of G

a Cayley diagram for G , and

a Schreier transversal for R in F(X)

but is also great fun. This is how it goes.

For each relation r = xl...xn E R , with x1...xn a reduced

word in X u X-1 , we draw a rectangular table having n + 1

columns and a certain (for the moment unspecified) number of rows:

xI x2

1 2

2

x
n

1

2

We begin by entering the symbol 1 in the first and last places

of the first row of each table, the remaining places in the first

rows being as yet empty. We then pick an empty space next to

some 1 (either to the right or left of it) and fill it with the

symbol 2 . For the sake of definiteness, suppose the situation

to be as in the above diagram, with 2 immediately to the right

of 1 and xl E X U X-1 lying between them. We record the in-

formation 'lx l 2' 11 (and/or '2x 1 = 1') in a monitor table, and

such an equation is eminently reasonable if we think of the num-

bers 1,2 as corresponding to the elements e,x1 E G , respect-

ively. Now we put a 2 in the first and last places of the

second row of each table and, wherever in any table 1 lies to
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the left of an empty space with x1 between the two spaces, or

to the right of an empty space with x1I between, we fill that

empty space with a 2 . Similarly, if 2 lies to the right (left)

of an empty space with x1(x1I) between, we fill that space with

a 1 . This purely mechanical process is known as scanning, and

it is here that most of the work is involved. Having made sure

that no more spaces can be filled in this way, we enter the symbol

3 in any empty space that is adjacent to a filled space. Having

recorded the corresponding information (of the form, 'ix = 3') in

our monitor table, we begin a new row in the relator tables and

scan as above. In similar fashion, we introduce the symbol 4

record information, begin a fourth row, and scan again. We con-

tinue in this way until there are no more empty spaces, whereupon

the number of rows in each relator table is equal to IGI .

In order to reach the situation where all the tables are com-

plete, we clearly need more information (of the form ix = j )

than is contained in our definitions of new symbols, and this is

supplied when any row of any table becomes complete. For suppose

we are in the position where such a row has but one remaining

empty space, and that space is filled as indicated in the follow-

ing diagram:

X9. Xf+l ... xR x£+1...
(1)

i k i j k

Now this transition involves two pieces of information, namely

ixQ = j , kx,+1

and we must distinguish between two cases. If this is the first

time the symbol j has appeared, one of these two equations is a

definition, and the other may be regarded as a bonus. On the

other hand, the arrival of j may be the result of scanning when

either one or both of these equations is already known. The lat-
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ter case yields no new information, while in the former we obtain

a bonus as before. There is one further possibility, but we

postpone this in order to give a couple of examples.

Example 1. Take the cyclic group G = <xIx4> of order 4 .

Here, there is only one relator table; it is headed x x x x and

has five columns:

x x x x

1 2 3 4 1

2 3 4 1 2

3 4 1 2 3

4 1 2 3 4

We have made the definitions

lx = 2 , 2x = 3 , 3x = 4 ,

and with the completion of the first row, have obtained as a bonus

that 4x = 1 . For explanatory purposes, we have indicated this

by dashes on the vertical lines of the table at the corresponding

points - one dash for a definition, two for a bonus, and three

when a row completes without yielding new information.

Since the table completes after 4 rows, we deduce that

IGI = 4 . Had we bothered to draw them, our monitor tables would

have looked like this:

definition bonus x

4x = 1

The Schreier transversal, which will play so vital a role in §12,

comes from the 'definition' column of the first monitor table,
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and is {e,x,x2,x3} in this case. The second monitor table

yields the (regular) permutation representation x H (1234) E S4

and the corresponding Cayley diagram is as follows:

1

x

11

2

x

4 f
x

x

3

Example 2. As an example where the answer is not quite so obvious

in advance, consider the Fibonacci group

C = F(2,3) = <a,b,c lab = c , be = a , ca = b>

Eliminating c by Tietze transformations, we have

G = <a,b l baba-1 , abab-1>

and thus two relator tables. The reader can either check the

working, or preferably do the enumeration himself using only the

'definition' column in the first monitor table below. If the

same definitions are made in the same order, the result should

look like this.

b a b a 1

1 2 3 4 1

2 6 8 3 2

3 4 6 7 3

4 5 2 6 4

5 8 1 2 5

6 7 5 8 6

7 1 4 5 7

8 3 7 1 8

a b a b-1

1 4 5 2 1

2 3 4 6 2

3 7 1 4 3

4 6 7 5 4

5 2 6 8 5

6 8 3 7 6

7 5 8 1 7

8 1 2 3 8
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It follows that F(2,3) has order 8 . We have omitted the

triple dashes here; as with the double dashes, the points where

they appear are not always unique. The monitor tables are as

follows:

definitions bonus a b

lb = 2 1 4 2

2a=3 2 3 6

3b = 4 la = 4 3 7 4

4b = 5 5a = 2 4 6 5

2b = 6 4a = 6 5 2 8

3a= 7 6b = 7 6 8 7

7b = 1 7 5 1

7a = 5 8 1 3

6a=8 8b = 3

5b = 8
8a = 1

Returning to the general case, we continue the analysis of what

occurs when a row completes, where the following alarming contin-

gency remains to be considered. It may (and sometimes does) happen

that in the process of scanning, the bonus information obtained

from the completion of a row is inconsistent with what we already

know. In terms of the diagram (1), this occurs when our monitor

tables at this point contain the information

ixQ = j , kxQ+1 = m with j x m ,

or ixf = j , jxQ+l = n with k a n ,

or mx-l = h , kxQ1 = m with h a i .

In every case we obtain inconsistent information of the form

ix = j, ix = m (say), with j a m . This induces the phenomenon

known as coset collapse, and we must proceed as follows. We con-

clude that j = m , and replace the larger of these numbers by
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the smaller throughout all our tables, noting that this converts

the definition of the larger symbol into a bonus. This may yield

extra bonuses treated in the usual way or further collapses,

whereupon we pursue the same strategy, and continue in this way

until all inconsistent information has been removed. We then

delete all rows in the relator tables corresponding to the offend-

ing symbols (that is, the larger of each inconsistent pair). If

so desired, we can now rename our symbols to form a set of con-

secutive natural numbers beginning with 1 . The interrupted

scanning process can now continue, and we are back in the old

routine. The situation is well illustrated by the following

example.

Example 3. We apply the method to the group

T2 = <x,yI x
2
y
3

, x3y4>

and continue until a collapse occurs (at ), whereupon the

partially completed tables are as follows:

x x y y y x x x

3 4 5 1 3 4 1

2 4 2 2 2

3 3 3 3

4 3 4 4 4

5 4 5 5 5

6

definition bonus x Y

lx = 2 1 2

2x = 3 2 3

3y = 4 3 6 4

... 4y = 5 5y = 1 4 5

3x = 6 6y = 3 5 1

4y = 2 ... 6 3

91



The inconsistent information (labelled *) tells us that

5 = 2 . We replace 5 by 2 and 6 by 5 throughout and con-

tinue scanning. As there are no further collapses, our relator

tables now appear as follows:

2

x x y

3

3

3

4

y y

4 2

4

5

2

3

4

x x x y y y y

32

3

4

3 4 2

4

5

1

2

3

4

Defining 5x = 6 , the second row of the second table gives

6y = 5 , and completion of the third row of the first table gives

the collapse 6 = 5 . Hence 5y = 5 and together with the

equations

5y = 3 , 3y = 4 , 4y = 2 , 2y = 1 ,

this leads to successive collapses 5 = 3 = 4 = 2 = 1 . Since the

first row of both tables is complete, we are not surprised to de-

duce that T is just the trivial group.

This example highlights the value of the strategy of defining

new symbols in such a way that the first rows of all the relator

tables become complete as quickly as possible. The retrospective

reader will recall that the same ploy was adopted in both of the

earlier examples. Another point worthy of note is provided by the

following generalization.

Example 4. It is plain that the group

T = <x J xn
n+l xn+l n+2>

n E Nn ,Y y , y >

is trivial, and that the first definition must be of the form

lx = 2 , or ly-1 = 2 . In fact the definitions must continue to

be of the form ix = j or iy-1 = j (with i < j ) for some time.
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It is not hard to see that at least the first n definitions must

be of this type (see Exercise 2), and that no row can become com-

plete before the nth definition is made. Thus, for any n E N ,

there is a presentation of the trivial group for which the coset

enumeration requires the use of more than n symbols. While the

process will always terminate for finite groups, there is in

general no way of bounding in advance the number of symbols that

will be needed. For this reason, the method cannot be described

as an algorithm.

We conclude this section with an explanation of why the method

works, that is, we prove that if a set of tables is both complete

and consistent, then the resulting permutation representation is

the regular one. Thus, given a finite presentation

G = <xl,...,xn I R>

let F be the free group on X = {x1,...,xn} and R the normal

closure of R in F . We assume that each r c R is a reduced

word in X , and that every xj appears in some such r (see

Exercise 4). Now suppose that a coset enumeration concludes

consistently after g rows. This means that each column of each

relator table contains the symbols 1,...,g in some order, and

so the above assumption implies that our second monitor table is

complete and contains the information

ixk = j , 1<_ i<_ g , 1 5 k _< n , (2)

for various values of j . Now by consistency,

i S i' _> ixk x i'xk for any k ,

and we have a mapping 0 from X to the symmetric group Sg

on {l,...,g} . Since every row of every relator table begins and

ends with the same symbol, the extension 0' of 8 to F maps

each r c R to e , and so (cf. the Substitution Test) R s Ker 0'

and 0' induces a homomorphism
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We now examine more closely the information in our first moni-

tor table. Its first column consists of g - 1 definitions, the

jth of which has the form

ix = j +1 , 1 5 j <_ g-1 ,

with i s j and x e X u X 1. We use these equations to define

inductively a set of words u1,...,u
g

e F as follows. We put

u1 = e and, for 1 < j <_ g , u J.+1 = uix . A simple induction

shows that

l(u J.8') = j , 1 < j < g (3)

and our original assumption of consistency ensures that ul,.... u
g

have the Schreier property (see Exercise 5). Regarding the u.
J

as members of G , the equations (3) show that their images under

p map 1 to each of 1,...,g respectively, and it follows that

p is transitive.

We must now show that p is faithful, that is, Ker 8' S

This requires a more delicate analysis and, to simplify notation,

we suppress the 0' and denote the corresponding action of F on

{1,...,g} by juxtaposition. Recall that our first monitor table

consists of the ng equations (2) (where the information ixk =j

may appear in the equivalent form jxkl = i ), and note that we

have exactly (n-1)g + 1 bonus equations, a familiar and signifi-

cant number! We now claim that if the equation ix = j appears

in this table, then u
1
x = ru

J
. in F , for some r E R . This

holds automatically for the definitions (with r = e), and for the

rest, we must examine more closely what happens when a row com-

pletes.

We assume (inductively) that our claim is valid up to a given

point in the enumeration, when a row completes as in the diagram

(1). Suppose we are in the kth row of the relator table for
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r E R , so that the local picture of the completed row is as

follows:

s t

x

i j k ,

(4)

where the bonus information is ix = j , and r is the reduced

word sxt . We examine in turn each of the three possibilities,

where the equation ix = j is either

(i) known already, or

(ii) not yet known but consistent, or

(iii) inconsistent.

In case (i), no entry is made in the monitor table and there is

nothing to prove. In case (ii), we must justify the new entry

ix = j in the bonus column. Now by our inductive assumption, we

know that

-1
uks = rlui , ukt = r2uj ,

where r1,r2 E R . It follows that:

-1
u
i
x = rl uksx

= r1 (r2u.t)sx
J

= r-1r(u.trt-1u.
)u1

2.
= r3uj

(5)

say, with r3 E R as required. Passing to case (iii), we arrive

at the same equation, but must pay heed to the fact that we

already have an equation of the form

u
i
x = r4uQ , z kj

(6)

or u
h
x = r5u. , h x i r5 E R
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In the former case, u
J

. and of belong to the same coset of R

in F , and so replacing f by j (say) throughout will not

violate our inductive assumption. For example, if

cy = f => ucY = r6uf

then

-1
cy = j => ucy = r6r4 r3uj

The second possibility (r51uh = r31ui) is equally harmless, as

also are the subsequent collapses that may result.

We have thus proved the claim made at the end of the penulti-

mate paragraph, and we proceed to deduce that Ker 8' S K . If

w is a reduced word in F with w E Ker 0' , we have lw = 1

where w acts letterwise from left to right. In accordance with

our claim, we deduce that

w=u1w=ruI =r f (7)

for r e R as required. This argument actually yields rather

more, namely, if w E G and wp fixes 1 , then w = e . Since

p is transitive, this implies that p is regular and IGI = g

Thus, provided the enumeration completes, all the claims made at

the outset of this section have been proved.

EXERCISE 1. Use the permutation representation given by the

enumeration in Example 2 to identify F(2,3) . Can the correspond-

ing Cayley diagram be embedded in the plane (or 2-sphere, or

torus)?

EXERCISE 2. Prove in detail that in enumerating cosets for the

presentation

T= <x y xn n+l xn+1 n+2>
n c Nn ,Y y y >
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at least n + 1 symbols are needed. Can you enlarge this lower

bound?

EXERCISE 3. Let G = <XIR> be a finitely presented group, and

n a natural number. Find a presentation for C for which the

coset enumeration requires more than n symbols.

EXERCISE 4. Let G1 = <XIR> and, if Y is the set of those

x e X such that x±l appears as a letter in a member of R ,

let G2 = <YIR> and F = F(X\Y) . Prove that G1 = G2 * F and

deduce that G1 is infinite when Y 9 X .

EXERCISE 5. Prove that the words ul,...,u
g

defined on p.94

satisfy (3), and that they have the Schreier property.

EXERCISE 6. Let F be the free group on {a,b} and

R = {baba-1,abab-1} F . Use the first monitor table in

Example 2 to write down a Schreier transversal for R in F

(definition column) and compute a set of free generators for

(bonus column).

EXERCISE 7 (cf. Exercise 6.6(iii) and Definition 9.2). Use the

method of coset enumeration to identify the Fibonacci group

F(2,5) .

EXERCISE 8. Identify the von Dyck group D(3,3,2) .

EXERCISE 9. Prove that a coset enumeration on the free product

Z2 * Z2 = <x,y I
x2, y2>

can never complete.

EXERCISE 10. Let G = <XIR> and R be the normal closure of

R in <XI > . Suppose a coset enumeration is consistent and
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complete after g rows and that u1,..-,u9 are as defined on

p.94 Prove that R is freely generated by the set

{uixujl J 'ix = j' appears as a bonus}

§11. Coset enumeration

By means of a very simple adjustment, the method described in

the preceding section can be carried out relative to a subgroup

H of a finitely presented group G = <XIR> . H is specified as

the subgroup of G generated by a finite set Y of words in

X , and the process terminates after a finite number of steps

provided that IG :HI is finite. We obtain such information as

the index of H in C ,

the permutation representation of G on the (right) cosets of H

the coset diagram of G relative to H , and

a transversal for H in G with the Schreier property.

While it yields less information than the old method in general,

the advantage of the new method is that the tables become complete

much sooner. When H = E , the two methods yield the same infor-

mation.

At the outset we draw up relator and monitor tables as before,

and in addition a table for each generator y of H . These new

tables are constructed in the same way as the relator tables, with

the letters of y separating adjacent columns, except that they

have only one row, beginning and ending with the symbol 1 . The

method then proceeds exactly as above, with the Y-tables being

completed according to the same rules as the R-tables. The pro-

cess again terminates when there are no more empty spaces, where-

upon IG :HI is just the number of rows in each R-table.

Example 1. We begin with a simple example, to which the answer

is already known. Letting G = <xIx6> and H = <x3> <_ G , the

tables are as follows:
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x x x x x x

1 2 3 1 2 3 1

2 3 1 2 3 1 2

3 1 2 3 1 2 3

definition

lx = 2
2x = 3

bonus

x x x

1 + 2 + 3 + 1

x

The one-rowed table is the first to complete, and the resulting

bonus is sufficient for the three rows of the relator table to com-

plete without yielding new information. We deduce that IG :Hl= 3

and obtain the permutation representation x H (123) E S3 for G

The Schreier transversal for H in G is just {e,x,x2} , and

the coset diagram is as follows:

1

x

Example 2. We carry out the same process for the von Dyck group

D(3,3,2) (see Exercise 10.8):

G = <x,y I x3,y3,(xy)2>

with respect to the subgroup H = <x> . The tables are as follows:

x x x Y Y Y

1 1 1 1 1 2 3 1

2 3 4 2 2 3 1 2

3 4 2 3 3 1

J

2 3

4 2 3 4 4 4 4 4

x y x y

1 1 2 3 1

2 3 1 1 2

3 4 4 2 3

4 2 3 4 4

x

1 +
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definition

ly = 2
2y = 3

3x = 4

bonus

3y = 1
2x = 3
4x = 2
4y = 4

x y

We deduce that IG: H1 = 4 , and that {e,y,y2,y2x} is a

Schreier transversal. We also have the permutation representation

and we deduce that Ixl ? Ixal = 3 . Since x3 is a relator, we

already know that lxi 3 , and conclude that IHI = Ixl = 3 .

It follows that IGI = 12 , and since A4 = <(234),(l23)> = Im a

we have identified G up to isomorphism.

This example illustrates a number of important points of which

some are typical and others not. Firstly, the situation where the

generators of H form a subset of the generators of C (that is,

Y s X) is a particularly propitious one. In such cases, we often

omit the one-rowed tables altogether and simply subsume the corre-

sponding information into the second column of the first monitor

table. Next, the periodic nature of the relators results in some

redundancies in the relator tables. When this happens, it saves

time to replace the internal entries of a superfluous row by a

dash linking the first and last entries as in Example 3 below.

Finally, the fact that G has been identified, that is, a is

faithful, is by no means typical (cf. Example 1 and Exercise 9)

and must be regarded simply as a stroke of good luck. The next

example illustrates each of these points, and we counsel the

reader to carry out the computation for himself.
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Example 3. We enumerate cosets with respect to H = <x>

D(4,3,2) :

4 3 2
G = <x,y Ix ,y ,(xy) >

x x X. X

1

2

1

3

1

4

1

5

1

2

3 3

4

5

4

5

6 6 6 6 6

Y Y Y

1 2 3 1

22

3

4

5

5 6

3

4

5

6 6

x y x y

1

2

1 2 3 1

2

3

4

5

4

5

5

6

2

6

3

4

5

6 6

definition bonus x y

lx = 1 1 1 2

ly = 2 2 3 3

2y = 3 3y=1 2x=3 3 4 1

3x = 4 4 5 5

4x = 5 5x=2 4y=5 5 2 6

5y = 6 6y=4 6x= 6 6 6 4

in

By the same argument as used in the previous example, we deduce

that IGI = 24 , and it is not hard to show (Exercise 3) that

G = S4 . We leave it to the reader to work out the other by-

products of the computation.

Example 4. To illustrate the phenomenon of coset collapse in the

adapted method, we consider the group

F(2,5) = <x,a,b,c,d I xa = b, ab = c, be = d, cd = x, dx = a> ,

and enumerate cosets with respect to <x> .
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b-1 -1 d-1 d -1 d -1x a a b c b c xc x a

1 1 3 1 1 3 2 1 1 3 2 1 1 2 1 1 1 2 3 1

2 3 2 2 1 3 2 2 1 2 2 3 3 2 2 1 1 2

3 2 3 3 3 3 2 3 3 3 3 3 3 3

definition bonus x a b c d

1x= 1 1 1 3 3 2 2

lc= 2 2d= 1 2a= 1 2 3 1 3 1

la = 3 lb=3 3b=2 2c=3 3d=3 3 2 3

2x=3 1d=2 3c=2

At this point we deduce that 1 = 2c-1 = 3 , whence

3 = lb = 3b = 2 , and the tables collapse to one row each. The

second monitor table tells us that each of the five generators

fixes 1 , so that F(2,5) = <x> and is thus abelian. Since we

already know (Exercise 6.6(iii)) that the derived factor group of

F(2,5) is Z11 , we deduce that F(2,5) = Z11 (as in the table

of §9).

Example 5. As our final example, we take another cyclically

presented group

G = <a,b,c I abcab-1, bcabc-1,cabca-1>

and enumerate cosets with respect to the subgroup H = <abc> .

a b c a b-1

1 2 3 1 2 1

2 3 1 2 3 2

3 1 2 3 1 3

b c a b c-1

1 2 3 1 2 1

2 3 1 2 3 2

3 1 2 3 1 3

c a b c a-1

1 2 3 1 2 1

2 3 1 2 3 2

3 1 2 3 1 3

a b c

1 2 3 1

definition bonus a b c
-1

a
b-1 -1

c

la = 2 1 2 2 2 3 3 3

2b = 3 3c=1 1b=2 2c=3 2 3 3 3 1 1 1

3a= 1

lc = 2

3b= 1 2a= 3 3 1 1 1 2 2 2
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Thus the tables complete consistently after only two definitions

and we deduce that IG :HI = 3 . The three rows involving the

symbol t will play a significant role later, as will the self-

explanatory extension of the second monitor table.

As in the previous section, we conclude with a proof that when

the process completes, it yields correct information. Thus we let

G = <xl,...,xn I R> and assume as above that each xi appears in

some member of R or Y . We let Y be a finite set of gener-

ators for H and assume that the process is consistent and

complete, with g rows in each R-table. Just as in the previous

section, we obtain a transitive permutation representation

p: G - Sg and a Schreier set ul,.... ug . Under the resulting

action of G on {l,...,g} , we see that each y c Y fixes the

symbol 1 ; this is just the content of the one-rowed Y-tables.

Letting K = {k E G Ilk = 1} <_ G be the stabilizer of 1 , we

see that H c K . To prove the reverse inclusion, we prove the

analogue of the crucial claim on p.94.

Thus we claim that if the equation ix = j appears in the

first monitor table, then u
i
x = rhu,

J
for some r c R and some

word h in Y S <XI > . As before, if the equation ix = j is a

definition, then w
i
x = wj and there is no problem. We again

assume that the claim is valid up to a given point when a row

completes, and assume in the first place that the information

ix = j accrues from the completion of the kth row of the R-table

headed r = sxt , as in 10.(4). When this information is con-

sistent, we argue as before, using the equations

u
k
s = r1h1ui , ukt-1 = r2h2u.

J

which hold by induction and correspond to 10.(5). We compute that

uix = hllrlluksx

= h1lr1lr2h2ujtsx
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= h11(r11r2)hI.(h11h2u.t)sxt(t-IujIh21h1).h11h2.uj

= r3h3uj ,

which is of the required form, since sxt = r E R . When this

information is inconsistent, we already have an equation of the

form

u
i
x = r4h4uf , j x k ,

say, whereupon u.
J

and of belong to the same right coset of the

subgroup R<Y> of <XI > . It is thus clear that our inductive

assumption is not violated by the collapsing procedure. The

situation corresponding to the second alternative of 10.(6) is

treated in a similar way, as are additional collapses. We are

left with the situation where the bonus comes from the completion

of a one-rowed table. If this is headed y = sxt E Y , then we

have

u
I
s = r1h1ui , uIt-1 = r2h2u. .

Since ul = e (by definition), we have

uix = hllrllsx

=
h-lr-1 yt-1

1 1

= h1 r1 yr2h2uj

=
(hllrilh1)(hIIyr2y-1hI)(h11yb2)U.

= r3h3uj ,

as required, and we repeat the above argument.

Finally, assume that some word w E G fixes the symbol 1

Because of the claim just proved, we have
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w = u1w = rhu1 = rh E R<Y>

regarding w as an element of F (cf. 10.(7)). This just means

that, as an element of G , w E <Y> = H . It follows that K c H

and that p is just the permutation prepresentation of G on the

right cosets of H . Hence, u1,...,ug comprise a transversal

for H in G , and IG :H1 = g as required.

EXERCISE 1. Draw a coset diagram for the enumeration carried out

in Example 2.

EXERCISE 2. Describe the Schreier transversal and permutation

representation resulting from Example 3, and draw the coset

diagram.

EXERCISE 3. In S4 , find a 4-cycle and a 3-cycle which generate

the group and whose product has order 2 . Deduce from the result

of Example 3 that D(4,3,2) = S4 .

EXERCISE 4. Prove that D(5,3,2) A5

EXERCISE 5. Enumerate the cosets of the subgroup H = <xy,zxyz>

in the group

G = <x,y,z l x2 ,y2 ,z2,(xy)3,(yz)3,[x,z]>

EXERCISE 6. Identify the group

<x,a,b,c,d Ix = bd, a = cx, b = da, c = xb, d = ac>

EXERCISE 7. Compute the order of the group

4 4 2 2<x,yIx = y = e, yx=xy>

EXERCISE 8. Find the index of <x> in the group
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G = <x,y I x
2
yxy

3
,y

2
xyx

3
>

EXERCISE 9. Let p be the permutation representation of a group

G obtained by enumerating cosets with respect to a subgroup H .

Prove that Ker p is equal to the intersection of the conjugates

of H . (This is the largest normal subgroup of G lying in H

and is called the core of H .)

EXERCISE 10. Given a complete enumeration of the cosets of

H = <Y> in G , prove that H is normal in G if and only if

every y c Y fixes every symbol.

EXERCISE 11 (cf. Exercise 10.10). Prove that the (n-l)g + 1

words ry accruing from bonuses u
i
x = ryu. (x c X) comprise a

set of free generators of R<Y> .

§12. The Reidemeister-Schreier rewriting process

The main ingredients involved in writing down a presentation

of a subgroup are already contained in the proof of the Nielsen-

Schreier theorem carried out in §2. To describe the general

method, we fix some notation. Thus, we let

F = F(X) , G = <XIR> = F/R ,

and, for a given subgroup H of G , we let K be the preimage

of H under the natural map: F -> G , so that H = K/R . The sub-

group H may be specified (as in the previous section) as the

subgroup of G generated by a given set of words Y = Y(X) , or

in some other way, for example, as some canonical subgroup of G

such as G' . We further suppose that a Schreier transversal U

for K in F is already to hand. We have so far discussed two

ways of computing U ; the method of the previous section always

works provided X, R, Y and IG: HI are all finite, while the

methods of §6 apply whenever X is finite and H 2 G' .

As in §2, we let f denote the member of U representing the
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coset Kf (f c F) , so that the set

B = {ux uX
-11

u E U, X E X, uX i U}

forms a set of free generators for K . Now each member of the

set

K= {uru-1I u E U, r E R}

belongs to R c K , and can thus be written (uniquely) as a word

in the elements of B (as in Lemma 2.3). Denoting the resulting

set by 9 , the transition from ft to S is known as the

Reidemeister-Schreier rewriting process.

Theorem 1. With the above notation, <BIS> is a presentation

for H .

Proof. In view of the Hasse diagram

9 F = <XI >

K = <BI >

R 2 S

OE

we merely have to prove that R is the normal closure of

in K . Since
S

C R < K , one inclusion is obvious, while for

the other, we first note that any f in F can be written as

f = ku with k E K, u f E U Hence, a typical generator

frf of R is equal to
k(uru)k-1

, which belongs to the

normal closure in K of ft = S as required.

The presentation for H given by this theorem is usually very

unwieldy, and we often make use of Tietze transformations to re-

duce it either to a more amenable form, or to the form <YIS>
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(in the case where H is originally specified as the subgroup of

G generated by Y ). We illustrate both cases directly, and then

go on to give a number of further examples of general interest.

Example 1. As usual, we begin with a group where the answer is

known in advance, and find a presentation for the subgroup

H = <x> in the group

G = <x,Y Ix
3

Y
3
,(xy)

2
>

Referring to Example 11.2, we see that U = {e,y,y2,y2x} , and

use the bonus column of the first monitor table to compute the

free generators B of K . These appear in the left-hand part

of the following table, while the right-hand part simply lists

the members of fi .

U \X

:
x (xY)2

_2

x - x3 1 3 ( x)2Y Y Y Y y Y Y

2 3 2 3 -2 3 2 -1
Y - Y Y x Y Y Y xYxY

2 2 2 -1 2 -1 -2 2 3 -2 2 3 -1 -2 2 2 -1 -2yx yx y yxyx y yxy yxyx y yxyxyx y

Thus, for example, the last entry in the left-hand part of the

table comes from the last entry in the bonus column on p.100,

which asserts that (y2x)y = y2x . We now redraw this table,

renaming the generators (in chronological order), and rewriting

the relations in terms of them as described above. While

Lemma 2.3 gives the algorithm for this process, it is often

simpler and more satisfying to do it by inspection.

B S

bl - b
3
l b2 1 3 2b b b

b3 - b3b4 - b3b2b1

- b2 b4b3 - b5b4

b4 b5 -
3

b5 b4b5
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Now our original generator x is just b1 , so we use Tietze

transformations to eliminate the other generators, beginning

with b2 :

H = <b1,b3'b4,b5 l bI,b1b3,b3b4,b4b5,b5>

Next we eliminate b3,b4,b5 to obtain

H = <b1 lbI,b13> = <xlx3>

as expected.

Example 2. Next we give an example where the answer is not so

obvious, and find a presentation for G' , where

G = <x,y I x2yxy3,y2xyx3>

We see that

GIG' = <x,y l y-1 = x3 y3 = x-1> = <xIx7>

and we may take U =
{x110

<- i <_ 6} . Working modulo G' , we

easily compute the entries of our Blf-table, and the result is

as follows:

U X x y

-1 2 3 2 3
e - yx x yxy y xyx

-2 3 3 -1 2 2
x - xyx x yxy x xy xyx

2 2 -3 4 3 -2 2 2
x - x yx x yxy x x y xyx

3 3 -4 5 3 -3 3 2
x - x yx x yxy x x y xy
4 4 -5 6 3 -4 4 2 -1

x - . yx x yxy x x y xyx

5 5 -6 7 3 -5 5 2 -2
x - xyx xyxyx xyxyx
6 7 6 8 3 -6 6 2 -3

x x xy xyxyx xyxyx
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The following table describes the action of x on the bi ;

the compilation of such a table frequently assists in the task of

expressing the relators ft in terms of the generators B .

b. xb.x-1

bl
x7

bl

b2 = yx-1 b3

b3 = xyx-2 b4

b4 =
x2yx-3

b5

b5 = x3yx 4 b6

b6 =
x4yx-5

b7

=
x5yx-6

b
b8b11

7

b8 = x6y b1b2

We thus obtain that

sl = x2yxy3 = b4b6b7b8

s2

=

x3yxy3x-1 = b5b7b8b2

s3 = x4yxy3x-2 = b6b8b2b3

s4 = x5yxy3x 3 = b7bIb2b3b4

s5

=

x6yxy3x-4 = b8b3b4b5

s6 = x7yxy3x-5 = b1b2b4b5b6

s7 = x8yxy3x-6 = b1b3b5b6b7

s8 = y2xyx3 = b2b3b5b1

s9 = xy2xyx2 = b3b4b6b1

s10 = x y xyx = b4b5b7b1

s11 = x3 y2xy =

1
4 2

b5b6b8

s12 =
xyx-

x y = b6b7b1b2
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s13 =
x5y2xyx-2

=

3
2

b7b8b3

s14 =
xyx-

x y = b8b2b4

We proceed to reduce this 8-generator 14-relator presentation

to an easily recognizable form. Relators
sills13's14

respect-

ively yield

-1 -1 -1 -1 -1 -1b5=b8b6, b3=b8b7 , b4=b2b8

which when substituted in s6 , give

bl = b
2
8

Substitution of this in s12 yields

-2 -1 b-i
b2 = b8 b7

b6
, and so b4 = b6b7b8

We can now apply Tietze transformations to eliminate the superflu-

ous generators b1,b2'b3'b4'b5' and relators
s6'sllls12's13's14 '

The remaining relators (in order) turn out to be:

sl = b6b7b8b6b7b8

-1 -1 -2 -1 -1
s2 = b8 b6 b7b8b8 b7 b6

-2 -1 -1 -1 -1
s3 = b6b8b8 b7 b6 b8 b7

s = bb2b2b-1b-1b1blbbb4
7 8 7 6 8 7 6 7 8

-1 -1 -1 -1
s5 = b8b8 b7 b6b7b8b8 b6

2 -1 -1 -1 -1
s7 = b8b8 b7 b8 b6 b6b7

-2 -1 -1 -1 -1 -1 -1 2
s8 = b8 b7 b6 b8 b7 b8 b6 b8

-1 -1 2
s9 = b8 b9 b6b7b8b6b8

-1 -1 2
s10 = b6b7b8b8 b6 b7b8
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Relators s5 and s7 respectively assert that b7 commutes

with b6 and b8 , whereupon s4 yields that b6 and b8 com-

mute with each other, proving that G' is abelian. The remaining

relators yield the following relation matrix for G' :

2 2 2

-2 0 -2

0 -2 0

-2 -2 -2

2 0 2

0 2 2

Row operations alone suffice to reduce this to the matrix

2 0 0

0 2 0

0 0 2

f

which proves that

G' = Z2 X Z2 x Z2

whence IG'I = 8 and IGI = 56 . For purposes of comparison we

shall tackle this group by a different method in the next section.

Example 3. As a somewhat simpler example, we find a presentation

for G' when G is the von Dyck group

D(3,3,3) = <x,y I x3,y3,(xy)3>

We see at once that Gab = <xix3> x <yly3> , so that

U = {xlyi I 0 -< i, j <_ 2} will do for our Schreier transversal.

Our BIft table is again compiled by working modulo GIG' , and

the result is as follows:
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x y

e - - x3 y3 (xy)3

3 -1 2 -1
x - - - xy x x yxyxyx

2 3 2 3 -2 3 -2
x x - - x y x x yxyxyx

1 -1 -1
3 3Y

x
YxY

-
Yx Y - (Yx)

-1 -2 3 -1 -1
xy xyxy x - xyx y x - -

2 2 -1 2 3 -1 -2xy xyxy - xyxy x - -
2 2 -2 -1 3 2 3 -2 2 -1

y y xy x y y x y - y xyxyxy

2 2 -2 -2 3 -1 2 3 -2 -1 2 3 -2 -1
xy xy xy x xy x xy x y x - xy (xy) y x

2 2 2 2 -2 2 -23 -2 -22 2 3 -22 2 3 -2
x y x y xy xx y x y x y x - x y (xy) y x

We rename the generators and rewrite the relators to obtain the

following table:

B S

- - 0 7 267

- - - 8 348

0 - - 9 0159

1 - 123 - 1590

2 - 231 - -
3 - 312 - -

4 7 456 - 483

5 8 564 - 5901

6 9 645 - 672

We have abbreviated the generators to their subscripts (and would,

had it been necessary, have replaced i-1 by 1 ). This yields

the presentation

G' = <1,2,3,4,5,6 126,34,15,123,456>

Using the first four relators to eliminate 6,4,5,3, the last

relator becomes 1212 , and we deduce that C' = Z x Z , the free

abelian group of rank 2 .
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Example 4. To show that the method also works for non-metabelian

groups, we find a presentation for G' when G is the modular group

z
2

* Z3 = <x,Y I x2,Y3>

We take U = {xiy3
I i = 0,1, j = 0,1,2} , so that our Bl table

comes out as follows:

U x y

2 3
e - - x y

-1 -1 2 -1
y yxy x - yx y -

2 2 -2 -1 3 2 2 -2
y y xy x y YxY -

2 3 -1
x x - - xy x

-1 2 -1 -1
xy xyxy - xyx y x -

2 2 -2 3 -1 2 2 -2 -1
xy xy xy xy x xy x y x -

Renaming and rewriting as in the previous example, the BSS table

comes out like this:

B S

- - 2 5

0 - 03 -
1 5 14 -
2 - - 6

3 - L -
4 6 41 -

The generators 2,5,6 disappear first, closely followed by

3 = 0 and 4 = 1 . We are left with two generators and no

relators, so that C' is free of rank two in this case.

Definition 1. For Q,m,n E Z , we define the triangle group

t(f,m,n) by the presentation:
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0(Q,m,n) = <a,b,c J a2,b2,c2,(ab)Q,(bc)m,(ca)n>

To avoid degeneracy and duplication, we usually assume that

f ? m > n ? 2.

Example 5. Consider the subgroup H of A(Q,m,n) generated by

x = ab and y = be . Since

xa = ba = x-l, xb = b-lab2 = x-1, xc = cabc = y-lx-1
Y,

ya = abca =
xy-lx-1, yb = cb = y-1, yc

=
c-lbc2 = y-1

we see that H is normal in G . Hence, by Theorem 3.3,

2 2 2 Q n
G/H = <a,b,c J a ,b ,c ,(ab) ,(bc)m,(ca) ,ab,bc>

_ <a,b,c I a2,ab,ac> = Z2

and we can take {e,a} for our Schreier transversal U . The

BId- and Big- tables are then as follows:

U a b c

e - ba-1 ca -1 a2 b2 c2 (ab)' (bc)m (ca)n

a a2 ab ac - ab2a 1 ac2a-1

a(ab)Xa 1 a(bc)ma 1 (ac
)n

S

4 12 f 1 32

23 45

54

(3
212)I

(34)m

mH1 3 5

Writing x ab = 3, z ac = 5, we have

H = <x,z I xQ,(x-lz)m,zn>

In terms of our original generators x , y=bc=xlz , we see

that H is just the von Dyck group D(Q,m,n) . It follows that
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every triangle group contains the corresponding von Dyck group as

a subgroup of index 2 .

Both the groups A(f,m,n) and D(f,m,n) , as well as the

symmetric group Sn , are examples of generalized Coxeter groups,

defined as follows.

Definition 2. Given a symmetric n x n matrix M = (m1..) over

the non-negative integers, consider the group

G(M) = <xi,.... xn I R,S> ,

where

m. M..R={x.'I1<i<_n}, S={(xix.) 1j I1<i < j <_n}

G(M) is called the generalized Coxeter group determined by M

(N.B. Coxeter groups are given by the special case when each

mii is 2 , as in Sn , for example.)

Example 6. It is clear that for n ? 2 , S
n

is the Coxeter

group determined by the (n-1) x (n-1) matrix M
n

with super-

diagonal and sub-diagonal entries equal to three, and with all

other entries equal to 2 . We proceed to apply our method to

compute a presentation for An We complete the BIR -table

using the transversal U = {e,xl} , indicating the subscript

ranges in the first row.

U x
i

xi (2-i) 25i 2si

e -
x x 1 xi x. (x x )3 )3

(x x
i 1 1 2

i+li

X x x -
l

x.xx x (x x2)3x 1 1)3x 1x (xixi1 1
i i li 1 1

1 + 11

3<_j 2<_i<j-1

(xlxj)2 (xix.)2

x1(xlx.)2x1 x1(xix.)2x11
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The BI table is completed by renaming and rewriting in the

usual way, with subscript ranges as above.

B

- Yi t Yizi z2 (Yizi+l)3 zi (yizj)2

t zi - ziyi (ty2) 3 (ziyi+l)3 (ty.)2 (ziy.)2

Eliminating t and replacing z. by y-1 (2 5 i <_ n-1) , we

procure the presentation

3 -1 3An = <y2, ...' n-l Y2' { (YiYi+l) 12 < < n-l }

{yJ
1 3

<_ j s 12 <_ i < j-1 < n-1}>

Because of the second set of relators, the "-1's" can be

deleted from the first and third sets. We deduce that A is
n

just the generalized Coxeter group determined by the matrix

obtained from n-1 by adding 1 to its first entry.

We conclude this section with the observation that under

suitable circumstances, the process described above can be used

to compute the multiplicator M(G) of a finite group C (see

the introduction to Chapter III). Thus, if G = <XIR> and R

is the normal closure of R in F = F(X) , we have

F = <XI[X,R]>

[F, R]

Given a Schreier transversal for R in F , we find a presentation

for the subgroup <R> = R/[F,RI of this group. This subgroup is

abelian, and M(G) is just its torsion subgroup, which can now

be identified by the methods of §6. It turns out however that

even for relatively innocent-looking groups (see Exercise 9), the

calculation is somewhat horrendous.

EXERCISE 1. Let G be the group
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<x,Y,zI xz = Y, yz = x, z = e>

(see Exercise 1.7). Prove that the subgroup H = <x,y> is

freely generated by {x,y} .

EXERCISE 2. Compute the order of the group

<x, y x 3 yxy4
, y

3xyx4
>

EXERCISE 3. Find all positive integral solutions of the

Diophantine equation

l/k+1/m+1/n=1 .

Prove that for each solution (k,m,n), D(k,m,n) ' = Z x Z .

EXERCISE 4. Prove that D(k,k,k)' is a one-relator group for

any k c N .

EXERCISE 5 . Show that (Zk * Zm)' is a free group and write

down its rank.

EXERCISE 6. Perform the computation of Exercise 5 for

(Z2 x Z2) * Z2 .

EXERCISE 7. Let Mn be the matrix (of Example 6) determining

the Coxeter group S
n

If the (k,k+l)- and (k+l,k)- entries

are converted from 3 into 2 (1 < k <_ n-2) , what is the

corresponding Coxeter group?

EXERCISE 8. Let M be a matrix determining the generalized

Coxeter group G . If every row of M contains a non-zero entry

on or before the main diagonal, prove that GIG' is finite. Is

this condition necessary?
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EXERCISE 9 (cf. Exercise 7.5). Compute the multiplicator of

Z2 x Z2 . [Time limit: 2 hours .1

EXERCISE 10 (cf. Theorem 8.1). By finding a presentation for

the abelian normal subgroup H = <x2,y2,z2> of

J(a,b,c) _ <x,y,z Ix
y

= y
b-2

x
-1
y
b+2

, y
z

= x
c-2

y
-1

z
c+2

x a-2 -1 a+2
z = x z x >

(where a,b,c are non-zero even integers), prove that J(a,b,c)

has order 28Iabc(abc-1)I .

§13. A method for presenting subgroups

In this section, we describe a modification of the method of

§11 which yields a presentation for the subgroup whose cosets are

being enumerated. In fact, if G = <XIR> and H is the subgroup

of G generated by Y = Y(X) , then the completed enumeration

yields a presentation for H on the generators Y . The modified

method thus incorporates both the rewriting process and Tietze

transformations described in the previous section. It therefore

provides a more efficient alternative in the case when we are

dealing with a particular group and subgroup for which the

enumeration terminates.

The basic idea is to keep track of coset representatives rather

than just cosets, so that information of the form ix = j is sup-

plemented by ix = hj , where h is a word in the subgroup gener-

ators Y . We record this information in our second monitor table

only, the others being as before. The value of the word h

depends on the source of the information ix = j , and is computed

according to the following rules.

(i) If ix = j is a definition, take h = e .

(ii) If ix = j is a consistent bonus coming from the com-

pletion of the k-row of the R-table headed by r = sxt , we

really have
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ks = hIi, kt-1 = h2j (1)

where hl,h2 are words computed inductively from ks and kt-1

using the second monitor table. In this case we take h = h
1

1
h
2

(iii) If ix = j is a consistent bonus from the Y-table

headed by y = sxt and s = h1i , t-1 = h2j with h1,h2 computed

as in (1), we take h = hllyh2

(iv) If ix = j leads to the collapse j = k , with j < k

say, we proceed as follows (other types of collapse being treated

in a similar way). We have

ix=hj , ix=h3k ,

where h is computed as in (ii) or (iii) and h3 is known

already. We then substitute h31hj for k throughout, paying

heed to the following two points. Firstly, the definition of k

is converted into a bonus as before, and secondly, the k-row of

the second monitor table needs special attention. A typical

entry kx = h4k' in this row now yields the information

jx = h-1h3h4k' . Now this is either a bonus and is treated as

such, or an equation jx' = h5f' already exists. If k' x Q' .

it is treated as another collapse and if not, we simply ignore it;

the word h51h-1h3h4 is a relator of H which will later come

out in the wash. As before, we pursue this strategy until all

inconsistent information has disappeared.

In the case where the enumeration terminates without any

collapse, the relators for H are obtained from those rows of the

R-tables which complete without yielding a bonus, namely, the

hitherto insignificant animals marked with the symbol $ in the

foregoing. If the k-row of an R-table is of this type, we have

k = hk , where h = h(Y) is computed from the second monitor

table as in (ii) above. Letting S denote the set of words re-

sulting from all R-rows marked t , <YIS> is a presentation

for H . In the case where a collapse has occurred we take S

to be the set of words arising in this way from all the rows of
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the R- and Y-tables. This is necessary because a collapse can

invalidate our original markings.

Example 1. We resuscitate Example 11.5 and write y = abc for

the subgroup generator. The tables are reproduced below, the sec-

ond monitor table being left blank after the first bonus, namely,

3c = 1 (now interpreted as 3c = yl , according to (ii) above).

a b c a b-1

1 2 3 1 2 1

2 3 1 2 3 2

3 1 2 3 1 3

b c a b c-1

1 2 3 1 2 1

2 3 1 2 3 2

3 1 2 3 1 3

c a b c a 1

1 2 3 1 2 1

2 3 1 2 3 2

3 1 2 3 1 3

a b c

1 2 3 1

definition

la = 2
2b = 3

bonus

3c=1 lb=2 2c=3
3a=1 3b=1 2a=3
lc = 2

a b

2

3

c

yl

b-1

1

2

-1
c

y-13

The next bonus comes from the completion of the first row of

the first table, where we have

la = 2 ,

2b=3=>lab=3
3c = yl => 1 abc = yl

la=2=> 1 abca=y2

The modified bonus thus asserts that y2b-1 = 1 , that is,

lb = y2 , or 2b-1 = y-11 (as in (ii) above). In a similar way,

we obtain y3 = 2c from the second row of the second table, and

y21 = 3a from the third row of the third table. The remaining

three bonuses are dealt with in turn in a similar way and our

second monitor table finishes up looking like this:
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a b c
a-1

b-1 c-1

1 2 y2 y52 Y-2 3
y-63

y 13

2 y53 3 y3 1 y-11 y-51

3 y21 y61 yl Y-5 2 2 y 12

To obtain the relators for H , we first take the second row of

the first table, where

2 = 2abcab-1 =
y53bcab-1 = y5 y6lcab-1 = y5 y6y52ab-1

5655 -l 5655
=yyyy 3b = y y y y 2

The relator is thus y21 . The remaining two rows of type

yield in turn

6556-1 21 5565 21
y y y y y = y , y y y y = y

for the other relators. We deduce that

H = <yly21 > = Z21

so that IGI = 63 , as in the table of Fibonacci groups given in

§9 (p. 76) .

Example 2. For purposes of comparison, we now tackle the group

>G = <x,yIx
2
yxy

3
,y

2
xyx

3

of Example 12.2, and find a presentation for the subgroup H

generated by y . The reader is again counselled to perform the

computation himself, using only the definition column of the

first monitor table. The enumeration completes without collapse

after 8 rows, and the tables are as follows:
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x x Y X Y Y Y I I
Y Y x y x x X

1 +

2

3

4

5 +

6

7

8

2

3

7

1

6

4

5

3

7

5

2

4

1

6

8

+ 4

3

8

5

2

1

7

6

1

7

8

6

3

2

5

4

1

3

6

7

4

5

8

2

1

4

7

3

2

8

1 6

5

1

2

3

4

5

1 6

7

8

1

2

3

4

5

6

7

8

1

5

4

2

8

7

3

6

1

8

2

5

6

3

4

7

2

8

3

6

4

7

1

5

5

6

4

7

2

3

1

8

61
4

1

5

3

7

2

8

4

1

2

6

7

5

3

8

1

2

3

4

5

6

7

8

-1 -1
definition bonus x Y x Y Y

3 -1
1y=1 1 2 yl

4
Y

1
Y 1 + 1

-31x = 2 2 3 5 1
4

Y

-1 -32x = 3 3
7

Y 4 2
7

Y

-3 3 63y = 4 4x=1 4y=2 4
1

Y
2

Y Y
6

3

-32y = 5 5 6 8
7

Y 2

-6 -15x= 6 6x=4 6
4

Y 7 5
8

Y

6y = 7 7y=3 7x=5 3x=7 7 Y
35

Y
33

y3 6

8 -85y = 8 8y=6 8x=8 8
8

Y y6
8

Y 5

Using the second monitor table, the eight rows marked $ yield

the following relators for h respectively:

-1 3 -1 3 3ey y y y ey
-1 3 8 3

y y ey yey

-6 -3
y y yeeey

3 3y eey eye
8 8 -6 3y y yy y ee

-6 -3
yyeeey y

3-1 3-13ey y y y y e
3 8 8 8yey ey y y

We see that H = <yly7> = Z7 , and this is an alternative proof

that IGI = 56 .

Example 3. To give an application of the method when the sub-
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group involved is non-cyclic, consider the subgroup H generated

by x = ab, y = ac in the group

G = F(3,4) = <a,b,c,d I abc = d, bcd = a, cda = b, dab = c> .

The tables are completed in the usual way and turn out to be as

follows:

a b c d-1 b c d a 1 c d a b-1 d a b c-1

1 2 1 3 1 1 3 4 2 1 1 3 4 3 1 1 3 1 3 1

2 4 2 1 2 2 1 3 4 2 2 1 3 1 2 2 1 2 1 2

3 1 3 4 3 3 4 2 1 3 3 4 2 4 3 3 4 3 4 3

4 3 4 2 4 4 2 1 3 4 4 2 1 2 4 4 2 4 2 4

definition

la = 2

lc = 3

2a=4

bonus

2b=1 2c = 1 2d=1
ld=3 3a = 1 lb=3
4b = 2 3d=4 4a = 3
3c = 4 4d= 2 3b = 4
4c = 2

Y

a c

1 2 1

x

a b

1 2 1

I a b c d
i

x1 b-1 c-1 d-1

1 2 X-1 y3 3 x3 X-1 yx3 X-1 2 y-12 xy12

2 4 x 1 y 1 yx 11 1 yxy 14 yx lyxy 14 x 1y4

3 x 1y 1x1 y 1x4 4 x
14

y
14

y 1x1 1 x
11

4 y 3 yxly-12 yxly-lxy-12 y-1x2 2 x 1y3 3 x 3

We deduce in turn the following relations for H from the five

rows marked t :

(y)(Y-lx)(yx-ly-lxy-1 )(x-1 y)

= e

(Y-1
x)(yx-ly 1xY-1)(yx 1)(x-lyx) = e

(yx
ly-1)(Y)(x)(y-1)

(e) (y-l x) (e) (x lY)

= e

= e

(Y-lx)(e)(yx
ly-1)(yx-l yxy-1) = e
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As the last of these is a consequence of the first two and the

other two are trivial, we have

H = <x,y I Cy,x] = Cx,y-1] = Ex l,y]>

Note that Hab = Z xZ , so that F(3,4) is infinite (as claimed

in the table of §9).

Example 4. To illustrate the phenomenon of coset collapse, we

take as our final example the subgroup H = <x> of F(2,5) (see

Example 11.4):

G = <x,a,b,c,d I xa = b, ab = c, be = d, cd = x, dx = a>

Since the tables actually collpase down to one row, this example

also shows how the method can be used to find a presentation of a

group on a new set of generators (cf. Theorem 4.4). The tables

are reproduced below, with the second monitor table suitably

modified.

x a b-1 a b c-1 b c d-1 c d
x-1

d x a-1

1 1 3 1 1 3 2 1 1 3 2 1 1 2 1 1 1 2 3 1

2 3 2 2 1 3 2 2 1 2 2 3 3 2 2 1 1 2

3 2 3 3 3 3 2 3 3 3 3 3 3 3

definition bonus x

1

1c=2
la = 3

2d=1 2a=1
lb=3 3b=2 2c = 3 3d = 3
2x=3 ld= 2 3c= 2

1

I x a b c d .-1 a-1 b-1
c-1

d-1

1 xl 3 x3 2 x-62 x-11 x-22 x-12

2 x63 x21 x33 xl 3 1 x61

3 2 x33 x 62 1 x-11 X-3 2 x-33
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Now the row marked $ yields

x3c = (lb)c = ld = x-62 ,

and since we already have 1 = 2c-1 , we deduce 3 = x 71 . We

then find that

2 = 3b = x-7 lb = x-63 = x-131 ,

and the collapse is complete. The first half of the first row of

the modified monitor table now takes the form:

x a b c d

1 11 xl I

x-71 I x-61 I x-131
I x

191

Thus we find that

x-61 = lb = lxa = xla = xla = xx-71

yielding the empty word. The remaining four relators of C yield

x131=x 7x61, x191 =x6x131 ,

xl = x-13x-191, x-71
= X-19 XI ,

and we deduce that

G = H = <xIx33,x11> = <xIx11> = Z11
'

as before.

We conclude this section by proving that the method does in

fact yield a presentation for the subgroup in question. We adopt

the notation and assumptions of the last part of §11 (p.103).

Thus the definitions inductively determine a Schreier transversal

for R<Y> in F , while the bonuses yield a set

B = {r.h. 1 1 5 i <_ m}, m = (n-1) g + 1, r. E R, h. E <Y>
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of free generators for R<Y> as in Exercise 11.11 and §12. Thus

the hi = hi(Y) generate <Y> (though not necessarily freely),

and are precisely the words in Y figuring in the first half of

the modified second monitor table. Now for each r E R and

1 <_ k <_ g , let

wr,k = wr,k(rIhl,...,rmhm)

be the word in B obtained by letting r act letterwise on uk

that is, ukr = wr kuk . It follows from Theorem 12.1 that R is

the normal closure of the set

{wr k I r e R, 1 <_ k <_ g}

in R<Y> . (The letterwise action simply corresponds to the re-

writing process of §12.) Furthermore, the words

wr
k =

w
r

k(hl,...,hm) obtained by deleting the ri's from

wr,k is precisely the set S of alleged relators for H .

Since R<Y> is free on B , there is a unique homomorphism

e : R<Y> } <Y>

r.h. *> h.

Now H is the factor group of R<Y> by the normal closure of

and since the h
i

generate <Y> , 6 is onto. It follows from

Exercise 1.3 that H is isomorphic to the factor group of <Y>

by the normal closure N of Sg0 = S . (This corresponds to the

Tietze transformations of §12.) Since <Y> may not be freely

generated by Y , we must perform one final step. There is a free

presentation v: F(Y) --W <Y> fixing the generators (by san), and

regarding S as a subset of F(Y) , we have Sv = Sv = N by

Exercise 1.3 again. It follows that

H= <Y>/N=F(Y)/S = <YIS>

as required.
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EXERCISE 1 (see Example 3). Use Tietze transformations to show

tha t

F(3,4) = <a,b,c,d I abc = d, bcd = a, cda = b, dab = c>

G = <a,b,c I abc = c -
1

= c-1ba-1 =
cb-la-1>

and deduce that a2 = b2 = c2 E Z(G) . Use this to write the

commutators [a,b],[a,c],[b,c] as words in x = ab , y = ac and

deduce that H/G' = Z2 x Z2 . Use the method of the previous

section to find a presentation for G' .

EXERCISE 2. Use the method of this section to show that the sub-

group H generated by x2,y2,xy in F = <x,yl > has index 2

and is free on these generators.

EXERCISE 3. Find a presentation of the subgroup <x> of

<x,Y I x3Yxy4,y3xyx4>

EXERCISE 4. Present the subgroup <ab,bc,ca> of

G = <a,b,cl abc = b, bca = c, cab = a>

Can you identify G ?

EXERCISE 5. Check that the subgroup <x2,y2,z2> of

<x,Y,zIx-lyx-ly3,y-lzy-1 z3,z-1xz-1x3>

is normal and abelian, and find its order and index.

EXERCISE 6. Find a presentation for the subgroup
<x2,y2,z2>

of

<x,y,z IX-1y-1xy3,y-lz-1yz3,z-1X 1zx3>
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EXERCISE 7. Can you name the groups of the last two exercises?

Are they isomorphic?

EXERCISE 8. Identify the subgroup of

<a,b,c I abcab-l,bcabc-l,cabca-1>

generated by x = abc, y = ab .
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5 The triangle groups

What immortal hand or eye

Could frame thy fearful symmetry? (Blake: The tiger)

Suppose we wish to tesselate a space with copies of a triangle

ABC :

If a,b,c denote reflection in BC,CA,AB respectively, then

a2=b2=c2=e (1)

Furthermore, be consists of a counterclockwise rotation about A

through an angle 2a . Thus, to have any hope of success, we must

insist that 2Tr is an integer multiple of 2a , and similarly of

2S and 2y . Taking

a = Tr/m, R = Tr/n, Y = Tr/k, 2 <_ k,m,n e Z

it follows that

(ab)le = (bc)m = (ca)n = e (2)

The group of transformations generated by a,b,c is thus a

homomorphic image of the group A = A(k,m,n) of Definition 12.1.

Indeed, under suitable conditions, these groups turn out to be the

same, so that the triangles involved in the tesselation are in

one-to-one correspondence with the elements of the group A . It
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is clear from the relations (1),(2) that the words of length two

in A comprise a subgroup of index 2 generated by ab,bc .

This is called the group of 'pure rotations', and is isomorphic

to the von Dyck group D(k,m,n) (Example 12.5).

To decide whether D(k,m,n) is finite or not, we take a closer

look at the space in which our triangle is sitting. The nature of

this space depends critically on the angle-sum of the triangle;

specifically, three cases arise according as 1/k + 1/m + 1/n is

equal to, greater than, or less than unity. We take each of these

in turn, observing that D(k,m,n) is a finite group if and only

if the corresponding space is compact.

§14. The Euclidean case

We begin with the case 1/k + 1/m + 1/n = 1 , as this is

traditionally the most familiar of the three. Assuming without

loss of generality that 2 <_ k <_ m <_ n , our equation has only

three solutions (Exercise 12.3):

(3,3,3), (2,4,4), (2,3,6),

and we take each of these in turn.

Consider the tesselation of R2 given by the equilateral

triangle, of which a piece is shown in Fig.l (p.132). Our original

triangle ABC is labelled e here, and its images under a few of

the elements of A are labelled accordingly. Note that alternate

triangles are labelled with words of even length, corresponding to

members of D(3,3,3) .

In order to prove that A(3,3,3) is an infinite group, it

will suffice to show that every triangle acquires a label. This

is a consequence of two simple topological facts, both of which

are expressed in terms of the following notion. Two triangles

are called adjacent if they have an edge in common, and are called

connected if there is a finite sequence of triangles containing

these two such that each is adjacent to its successor. Then we

observe that:
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cba aba cab

bcba ba ab acab
C

bca a b acb

ca e cb

B A

aca c bcb

ac be

bac abc

abac

Fig.l

(i) any reflection is continuous, whence the members of A

preserve adjacency of triangles, and

(ii) the dual graph (tesselation of R2 by regular hexagons)

is connected, whence every triangle is connected to ABC .

Now suppose that there is an unlabelled triangle. Since this

is connected to ABC (by (ii)), we can find en route adjacent

triangles T,T' such that T has a label, w say, while T' is

unlabelled. Now by construction, Tw
1

= ABC , and is adjacent to
T'w-1

(by (i)), so that
T'w-1

= (ABC)x , where x is one of

a,b,c . Our construction now implies that T' bears the label

xw , which is a contradiction. Thus, A(3,3,3) (and hence

also D(3,3,3) ) is infinite, it is left as an exercise to show

that its elements are actually in one-to-one correspondence with

the triangles in the tesselation.

For the sake of variety, we tackle the group A(4,4,2) in a

slightly different way. Suppose the plane is tesselated by

squares, with edges labelled as in the following diagram, where

the heavily-marked square is understood to repeat indefinitely up

and down and to left and right.
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x

y y

y y y y y

y y

x x

x x x x x

x x

y y

y y y y y

y y

x x

x x x x x

x x

y y

Fig. 2

±1 +1
Since the four edges at any vertex bear the labels x ,y- in

some order, both x and y induce permutations of the vertex set

(thought of as the Gaussian integers r in C with origin 0 ).

We thus have a homomorphism: <x,yI > - Sr , and
x4,y4,(xy)2

clearly belong to its kernel. There results a homomorphism

p: D(4,4,2) -> Sr

and since (x-ly)p sends 2k to 2(k+l) for all k e Z , Im p

(and hence D(4,4,2) ) must be infinite. We shall now prove that

p is one-to-one, so that Fig.2 is nothing other than the graph

(Cayley diagram) of D(4,4,2) with respect to {x,y} .

To see this, observe that any reduced word w = w(x,y) E D(4,4,2)

defines (via p) a path P in the diagram starting at 0 . It is

clear that if wp = e , then this path is actually a loop at 0 ,

and as such encloses a finite number (k, say) of square tiles. To

show that p is faithful, we assume (for a contradiction) that

w x e is a reduced word with wp = e , such that the number k
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of tiles enclosed by the corresponding path is minimal. Since w

is reduced, it follows that k >_ I , and we can find a square in-

side P whose boundary has an edge z in common with P . If

this square has boundary-label r = zt (reduced), then

Fig.3

±1 ±1 ±4 +4 ±2 ±2
z = x or y , and r = x ,y- ,(xy) or (yx)

According to Fig.3, we have

-1
w = w1zw2 = w1rt w2

_ (wlrwl1)wlt-Iw2

Now w1t-Iw2 is a word in D(4,4,2) for which the corresponding

path is a loop at 0 containing only k-l squares, whence

wlt-Iw2 = e by minimality. Since wlrwll is also equal to e

in D(4,4,2) , so is w , and this is the required contradiction.

In the final case, where {f,m,n} = {2,3,6} , we content our-

selves with drawing the pictures. Thus, Fig.4 shows the

tesselation obtained from A(2,3,6) , and Fig.5 illustrates the

graph of D(3,6,2) .
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Fig.4

Fig.5

EXERCISE 1. Use the permutations

c _ ...(012)(345)..., Tj = ...(123)(456)...
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of Z to show that the group D(3,3,3) is infinite.

EXERCISE 2. Use the result of the computation in Exercise 12.3

to show that the representation of L(3,3,3) given by Fig.l is

faithful.

EXERCISE 3. Sketch a piece of the tesselation of the plane

obtained using the group t(4,4,2) , and label the triangles with

its elements.

EXERCISE 4. Draw a piece of the graph of D(3,3,3) in the plane.

EXERCISE 5. Prove that all the triangles in Fig.4 receive

labels from A(2,3,6) .

EXERCISE 6. Prove that the graph of D(3,6,2) is as depicted

in Fig.5.

EXERCISE 7. Observing that Fig.l can be embedded in Fig.4, can

you derive a relationship between the groups i(3,3,3) and

A(2,3,6) ?

§15. The elliptic case

All the groups D(f,m,n) for which

1/f+1/m+l/n> 1 , 2<_ f <_mSn,

have already been identified in the foregoing sections. The list

is as follows:

(f,m,n) group order figure

(2, 2, n) D 2n n-gon

(2,3,3)
n

A4 12 tetrahedron

(2,3,4) S4 24 octahedron

(2,3,5) A5 60 icosahedron
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Note that in each case, the group is the symmetry group of a

regular figure in R3 , and that the group order is equal to

2(1/Q + 1/m + 1/n -
1)-1

.

To achieve a tesselation in this case, we need a space in which

triangles have angle-sum exceeding it . The obvious candidate is

the surface of the unit ball in R3 , with great circles playing

the role of lines. As we shall see, tesselations exist in every

case, and the triangles appearing are in one-to-one correspondence

with the elements of the group A . To see this, note that the

area of such a triangle is equal to the amount by which its angle-

sum exceeds it (the Gauss-Bonnet theorem). Thus, all the tri-

angles in the (Q,m,n)-tesselation have area equal to

(7T/Q + it/m + it/n - n) , and they partition a surface of area 4i

Hence, the number of triangles involved is just

4it(it/Q + it/m + it/n -
r)-l

= 4(1/Q + 1/m + 1/n -
1)-1

= 21D(9,,m,n)I

= IA(Q,m,n)I ,

from the above table.

Starting with the dihedral case k = m = 2 , take any triangle

with one vertex at the North Pole and the other two on the equator

distance it/n apart. Reflections in the two longitudinal sides

partition the northern hemisphere into 2n triangular regions

congruent to the original one, which thus has angle it/n at the

pole, as well as, 11/2,71/2 on the equator. Reflection in the

equator duplicates this picture in the southern hemisphere, and

we achieve the desired tesselation. The case n = 6 is illus-

trated in Fig.1 below.

Turning to the tetrahedral case, we begin by inscribing a cube

in the unit sphere in such a way that two adjacent vertices lie

on the Greenwich meridian at points equidistant from the equator.

These vertices are labelled A and C in the projection of Fig.2.

A little thought shows that there are exactly six great circles

containing more than two vertices of the cube, given by projecting

the edges of the cube from the centre onto the surface of the
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Fig.l

sphere. There results a division of the surface into 24 tri-

angles, of which a typical one is NAB . Two great circles meet

orthogonally at N , so the angle here is n/2 , and since three

great circles meet at each of A and B , the angles here are

both equal to ii/3 .

N

Fig. 2
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Now consider the angle-bisector at N in the triangle ANB .

It clearly lies on the line of longitude 45° W , and since ANB

is isosceles, it meets BA orthogonally. Denoting this point of

intersection by D , we have

AA = ,/2 , DAN = ,/3 , AD = /4

and we land happily in the octahedral case. Drawing in the

equator and the great circle containing longitude 450 E , each

of our original 24 triangles is bisected once, and we obtain

the tesselation illustrated in Fig.3. Note that the six points

where these three extra circles meet comprise the vertices of a

regular octahedron.

Fig.3

Finally, we approach the case (t,m,n) = (2,3,5) by imagining

a regular icosahedron whose vertices lie on the unit sphere.

Central projection maps the 30 edges into 15 pairs of anti-

podal great circle arcs. These 15 circles meet:

in fives at the vertices,

in threes at the centres of the faces, and

in twos at the mid-points of the edges.
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There results a barycentric subdivision of each of the 20 faces

into 6 congruent triangles, with angles 7/5,ii/3,rr/2 , as re-

quired. Fig.4 illustrates the situation, with heavy dots marking

the visible vertices of the icosahedron.

Fig.4

EXERCISE 1. Taking the scale ON = 1 in Fig.l, prove that

OA = 2 , OB = I/2 , and deduce that this figure can be con-

structed with ruler and compasses.

EXERCISE 2. Again taking ON = 1 , prove that OA = 1/yr3 in

Fig.2, and derive a ruler-and-compass construction for this

figure.

EXERCISE 3. Show that the tesselation of the sphere in Fig.2 is

the same as that obtained by central projection of the edges of

an inscribed regular tetrahedron.

EXERCISE 4. With reference to Fig.4, note that pairs of vertices

of the icosahedron are of three types:

adjacent, antipodal, other,
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whose distances apart are:

AB = CD = JL = p , say,

AC= BD = 2,

BC AD = KM q , say,

respectively. Prove that

1+V'5_q=P 2 p= 22/v ,

and derive a ruler-and-compass construction for this figure.

EXERCISE 5. Does the method used in Figs.l-4 to illustrate the

tesselations correspond to any kind of natural projection?

EXERCISE 6. Prove that

,(3,3,2) ° S4 D(2,3,4)

and that in every other elliptic case,

A(.,m,n) D(f,m,n) x Z2

§16. The hyperbolic case

In order to study the groups 0(R,m,n) for which

1/Q + 1/m + 1/n < 1 , we need a space where the angle-sum of a

triangle is less than it . An ideal example consists of an open

disc in R2 , in which the lines are just diameters of the disc

together with arcs of circles orthogonal to its boundary. While

the notion of reflection retains its usual meaning for genuine

lines (diameters), it is interpreted as inversion when the line in

question is a circular arc. Before going on to discuss the rel-

evant properties of inversion in a circle, we demonstrate that

this space contains triangles of the required type.
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Given positive integers f,m,n with 1/f + 1/m + 1/n < 1 , we

begin by forming a triangle whose angles are Tr/f,Tr/m,Tr/n , and

end by drawing a circle S2 orthogonal to each of its sides (two

straight, one curved). The construction (which, incidentally, is

not of the ruler-and-compass variety) is illustrated in Fig.l.

Fig.l

Let ABC be a Euclidean triangle with angles at A,B,C re-

spectively equal to

Tr/m, 7/2 + Tr/2n - Tr/2R - 7r/2m, Tr/2 + Tr/2Q - Tr/2n - 7r/2m .

Next, let OBC be the isosceles Euclidean triangle with base BC

and base angle Tr/2n + 7r/2m + r/22. . The arc BC of the circle

centre 0 then meets AB and AC in angles

(Tr/2 + Tr/2n - Tr/2Q - Tr/2m) + (Tr/2n + Tr/2m+ Tr/2Q) - Tr/2 = Tr/n ,

(Tr/2 + Tr/29 - Tr/2n - Tr/2m) + (7r/2n + Tr/2m + Tr/2f) - 7r/2 = Tr/f ,

respectively, and the non-Euclidean triangle ABC has the re-

quired angles. Now let D be a point where the circle i centre

0 radius OB meets the circle diameter AO . Since the angle

ADO is a right angle, the circle 0 centre A radius AD is
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orthogonal to all the sides of our non-Euclidean triangle ABC .

Letting b,c denote reflection in AC,AB respectively, and a

inversion in A , it is clear that b and c map the interior

of 0 bijectively onto itself, and that (bc)m fixes each of its

points. The corresponding facts involving the inversion a are

also true and, at the expense of slight digression, we proceed to

establish them now.

Let r denote the unit circle centre the origin 0 in R2

and y the operation on R2\{0} of inversion with respect to

r . If (r,8) are the polar coordinates of a typical point of

R2\{O} , then its image under y is the point (1/r,8) , whence

y constitutes an involution on this space. It is easy to prove

that y maps circles to circles, and that its set of fixed points

is just r . Furthermore, if we define an 0-circle (0-line) to be

the intersection with R2\{0} of a circle (line) through the ori-

gin, then y interchanges lines with 0-circles and fixes 0-lines.

We need one more crucial property of y , namely that it preserves

angles (see Exercise 2). It is clear that all these properties

carry over to the operation of inversion in an arbitrary circle,

simply by adjusting the coordinate system.

It follows from what has been said that y preserves circles

orthogonal to r , so that the inversion a in A (Fig.l) maps

the inside of 0 onto itself. Our main objective is now to

demonstrate that (ca) n is the identity, and this is done by

means of the following lemma.

Lemma 1. Let P and Q be points (not necessarily distinct)

of R2\{0} . Then,

(i) if P and Q are mirror images in an 0-line A , so are

Py and Qy ,

(ii) if P and Q are inverse with respect to an 0-circle

A, then Py and Qy are mirror images in the line A y .

Proof. Consider the following diagrams.
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(i)

Fig.2

The first assertion is obvious from Fig.2(i), since A is an

altitude of the triangle OPQ . For the second part, note that

PQ meets A in a right angle, so the lines A y and PyQy are

perpendicular since y preserves angles. Now if 6 is any

circle through P and Q , it must be fixed by inversion in A

whence A and 6 are orthogonal. It follows that 6 y is

orthogonal to A y , whence its centre lies on this line. Since

Py and Qy lie on by , they must be equidistant from Ay , and

this completes the proof.

Now let A be a line meeting a circle A in an angle r/n ,

where n is an integer greater than 1 . If A and A meet in

points 0 and A , choose coordinates so that r is the circle

centre 0 radius OA , as in Fig.3.

= Ay

0
it/n

7T/n

Fig.3
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If r meets A again in B , then Ay is just the line through

AB , and OAB is just n/n since y preserves angles. Let

A,p denote reflection in A,Ay, respectively, and let a be

inversion in A . We call a point of R2 pathological if it

either coincides with 0 , or can be mapped to the centre of A

by a word in A,a, . Taking any non-pathological point P , let

Q = PA and apply Lemma 1(i) to obtain that Py and Pay are

mirror images in A , that is, the transformations yX and Xy

agree on non-pathological points. Similarly, we apply Lemma 1(ii)

to P and Pa , and deduce that Py and Pay are interchanged

by u . It follows that, on non-pathological points,

X=YAY, a=ypy

Now we already know (from the introduction to this chapter)

that (Xp)n is the identity on R2 , and it follows that (Ta)n

fixes every point on which it can be defined. Returning to our

original situation (Fig.l), this means that (ca)n fixes the

interior of Q pointwise. Since the same is true of (ab)1

we have shown that the transformations a,b,c again generate a

homomorphic image of A(f,m,n) .

That the images of the triangle ABC under words in a,b,c

do in fact cover the inside of S2 , a more delicate analysis is

required than that carried out in the Euclidean case (§14).

Luckily however, we are now in a position to prove that A(Q,,m,n)

is infinite without recourse to this result. To see this, let

L be the set of images of ABC under words in a,b,c , each

bearing its appropriate label. Further, let R be the region

formed by intersecting the closed disc bounded by A with the

inside of 0 . Defining

.a =
(bc)m/2 , m even ,

(bc)km-1)/zb
, m odd

we see that Rd is a copy of R , obtained by rotation through

it about A (m even), or reflection in A (m odd). If k

denotes the diameter of Q parallel to ED , then R and ABC
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lie in one of the semicircles defined by D , while Rd lies in

the other. Hence, Rd is disjoint from both R and ABC .

Now suppose that R contains r labelled triangles from L

then so do both Rd and Ra . Since Ra contains both Rd and

also ABC , it follows that r+l <_ r , and we deduce that r

cannot be finite.

Fig.4

EXERCISE 1. Prove that inversion maps circles to circles,

interchanges lines with 0-circles, and fixes 0-lines.

EXERCISE 2. Show that inversion preserves tangency of 0-circles

and 0-lines, and deduce that it also preserves angles.
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6 Extensions of groups

... Though with patience He stands waiting,

with exactness grinds He all.

(Longfellow's translation of von Logau: Retribution)

The main purpose of this chapter is to give a proof of the

celebrated theorem of Golod and Safarevic, which gives an accurate

lower bound for the minimal number r'(G) of relations needed to

define a finite p-group G minimally generated by d(G) elements.

The naive bound r'(G) ? d(G) of Theorem 6.7 is relegated to the

humble role of a lemma, to be invoked almost unconsciously in the

penultimate line of the proof. The proof we give is due to P.

Roquette and is extremely elegant, modulo the rather technical

machinery needed to begin it. We shall need the notions of a G-

module A , and of the cohomology groups Hn(G,A) , n c No . If

the field k of p-elements is made into a G-module in a trivial

way, it turns out that HI(G,k) is a vector space over k of

dimension d(G) , while the dimension r(G) of H2(G,k) is at

most r'(G) . The last fact is proved in Theorem 20.3 using an

argument based on the presentation theory of group extensions.

Thus we begin with an account of the classical theory of group

extensions, and then proceed to establish the connection with

group cohomology. The only remaining preliminaries are a local-

ization process and some basic facts about finite p-groups. We

conclude by shedding a little light on the unsolved problem of

classifying those finite p-groups for which r(G) and r'(G) are

equal.

§17. Extension theory

The aim of extension theory is to classify those groups K

having a normal subgroup A when the groups A and C = K/A

have been specified (up to isomorphism) in advance. Now any
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x e K gives rise to an automorphism

a A -> Ax
-1 xa x ax = a

of A and, combining these, we obtain a homomorphism

a: K - Aut A

x F+ a
x

Now any homomorphism G -} Aut A yields a homomorphism

nat
K - G -} Aut A

and a will be of this form if and only if A <_ Ker a . Since

Ker a = CK(A) , this is in turn equivalent to the condition that

A be abelian.

To avoid complications, we will assume from the outset that A

is abelian and write it additively. The homomorphism S induced

by a takes the form

R: G --- Aut A

Ax -

and corresponds in a natural way to an action S' of G on A

given by

S' : A x G - A

(a,g) ag

where ag = ax when g = Ax . It is a simple matter to check

that this makes A into a G-module in the following sense.

Definition 1. Given a (multiplicative) group G , a C-module is

an (additive) abelian group A together with a mapping
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a,x) y ax

which obeys the following three laws:

(a+b)g = ag + bg , a(gh) = (ag)h , ae = a , (1)

for all a,b e A, g,h E C .

In terms of these ideas, we modify our original problem as fol-

lows. We shall study those groups K having a prescribed abelian

normal subgroup, with prescribed factor group, and such that conju-

gation within K induces a prescribed action of the latter on the

former.

Definition 2. An extension of a group G by a G-module A is a

diagram

i v
K: A -> K - G

where:

(i) K is a group and i,v are group homomorphisms,

(ii) i is one-to-one, Im i = Ker v and v is onto,

(iii) conjugation in K induces the prescribed G-action on A

Remark 1. Notice that

A = Im i = Ker v a K , K/Ker v= Im v= G

so that K has a normal subgroup isomorphic to A , with factor

group isomorphic to G .

Remark 2. We often write K in the form

0

AxG ->A

L V

A -} K + G - 1 , (2)
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where 0,1 are trivial groups, and refer to this as a short exact

sequence of groups. Part (ii) of the definition thus asserts that

the image of each homomorphism of (2) is the kernel of its suc-

cessor.

Remark 3. Part (iii) of the definition asserts that if x e G

and k e v-1(x) , then for all a e A,

(ax)i = k-1(ai.)k . (3)

The right hand side is independent of the choice of k since A

is abelian.

Example 1. Given a group G and a G-module A , consider the

Cartesian product S = G X A imbued with the following binary

operation:

(x,a)(y,b) = (xy,ay+b) , (4)

for all x,y c C, a,b e A . We compute that for all

(x,a),(y,b),(z,c) e G x A

((x,a)(y,b))(z,c) _ ((xy)z,(ay+b)z+c) ,

(x,a)((y,b)(z,c)) = (x(yz),a(yz)+(bz+c)) ,

and these are equal because of (1) above. This also guarantees

that

(x,a)(e,0) = (xe,ae+0) _ (x,a)

and furthermore,

(x,a)(x-1,-ax-1)
_ (xx-l,ax-l-ax-1) _ (e,0)
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for all (x,a) E G X A . We have shown that S is a group, and it

is easy to check that

X: A> S I u S -} G

a (e,a)
II) (x, a) * x

are a monomorphism and an epimorphism, respectively, such that

Im X = {(e,a) j a c A} = Ker p .

To verify part (iii) of Definition 2, that is, formula (3), let

x E G , so that (x,0) E p-1(x) , and a E A , so that as = (e,a)

Then

(x,0)-1(e,a)(x,O) _ (x-1,0)(ex,ax+0)

= (x-lx,Ox+ax)

= (e, ax)

as required. The resulting extension of G by A is called their

semi-direct product. The special case when the C-action on A is

trivial (that is, ax = a for all a E A, X E G) is none other

than the direct product of G and A . One final point to notice

is that the mapping

a: G - S

x (x, O)

is a homomorphism with the property vu = 1G . Because of this,

we sometimes refer (loosely) to S as the split extension of G

by A , in accordance with the following definition.

Definition 3 (cf. Exercise 7.3). An extension

t v
K: 0 -> A -} K -> G
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of C by A is said to split if there is a homomorphism a: G -- K

such that av = 1G ; a is called a splitting for K .

Remark 4. The extension K splits if and only if its kernel

Ker v has a complement (see Exercise 1.5) in K . The dual con-

dition on K , viz. the existence of a homomorphism p: K - A

with tp = 1A is stronger and is equivalent to the existence of

a normal complement for Ker v in K .

Remark 5. Suppose that K ((4) above) is an extension of G

by A with splitting a , and consider the mapping

0: S } K

(x,a) } (xa)(ai)

where S is the semi-direct product of G and A . We claim that

0 is a homomorphism, noting that because of (3),

va = 1G => ya E v-1 (y) , for all y E G

=> (YO-1(ai)(ya) = (ay)i , for all y E G, a E A.

Thus, given any (x,a),(y,b) E S , we have

(x,a)0 (y,b)0 = (xo)(ai).(ya)(bi)

=
(xa)(Ya).(ya)-1(ai)(Ya).(bi)

= (xa)(Ya)(ay)t(bi)

= (xy)a(ay+b)i

= (xy,ay+b)0

_ ((x,a)(y,b))0

Furthermore,

aa0 = (e,a)0 = (ea)(at) = ai

for all a E A , and
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(x,a)ev = ((xa)(at))v = (xov)(aiv) = x1Ge = x = (x,a)p

for all (x, a) E S . Thus, X6 = i. , Ov = p , and we have proved

that the two extensions are equivalent in the following sense.

Definition 4. Two extensions K,L of G by A are called

equivalent if there is a homomorphism e: K - L such that the

diagram

A

commutes.

Remark 6. That such a 6 must be an isomorphism is a special

case of the famous Five-lemma, and its proof is a nice exercise in

diagram-chasing which we recommend as an exercise. We see that

equivalent extensions yield isomorphic groups, though the converse

is false in general (see Exercise 7).

Remark 7. Equivalence of extensions is (predictably) an equival-

ence relation, and the proof of this comprises another worthwhile

exercise. In view of this it follows from Remark 5 that all split

extensions are equivalent, and it is a simple matter to show that

they in fact form an equivalence class. In so far as our overall

aim in this section is the classification of extensions up to

equivalence, the stockpile accumulated to date thus consists of

exactly one example; we now change gear in order to get the rest.

Though an arbitrary extension

ti v

K: 0 - A} K- G -* 1

will not split in general, we can mimic the splitting process in

the following way. By the Axiom of Choice we can choose an element

XT E v-1(x) for each x E G , where for convenience we take
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eT = e E v-1(e) . There results a mapping T: G -> K such that

TV = 1G ; we call T a transversal for K (since Im T is a

transversal for Im i in K in the usual sense) and denote by KT

the extension K together with its transversal T .

Now for any x,y E G , v sends both xTyT and (xy)T to

xy E G , and so these elements belong to the same coset of

Ker v = Im i in K . It follows that x,y E G determine an ele-

ment (x,y)f c A such that

(xT)(YT) = (xy)T(x,Y)fl

The resulting mapping f: G x G } A is called the factor set of

K
T

. Note that, since eT = e , we have

(e,x)f = (x,e)f = 0 (5)

for all x in G . The associative law in K and G leads to

a more complicated identity. For x,y,z c G ,

(XT)((yT)(zT)) = XT (yz)T (y,z)fl

= (x(yz))T (x,yz)fi (y,z)fl

and

((xT)(yT))(zT) = (Xy)T (X,y)fl (ZT)

_ (xy)T (ZT) ((x,Y)fl)ZT

= ((xy)z)T (xy,z)fl ((x,y)fz)l

using (3). Since i is a momomorphism, we have the identity

(x,yz)f + (y,z)f = (xy,z)f + (x,y)fz , (6)

for all x,y,z E G .

Definition 5 . A mapping f : C X C -; A satisfying conditions (5)

and (6) is called a normalized 2-cocycle; the set of these is
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denoted by Z2(G,A) . Pausing to observe that Z2(G,A) forms an

abelian group under pointwise addition (see Exercise 8), we pass

on to investigating the effect on f of changing T . Thus, let

T,T' be transversals (with eT = eT' = e ) for K , with factor

sets f.f' respectively. Since XT and xT' belong to the same

coset of Im i in K , each xE G determines an xd EA by the rule

xT' = (xT)(xdi) .

There results a mapping d: G - A such that

ed = 0 . (7)

We now compute (using (3)) that for all x,y c G

(xY)T (xy)di (x,Y)f't = (xY)T' (x,Y)f't

= (xT')(YT')

= XT xdi YT ydi

= xT yT (xdi) YT yds.

= (xy)T (x,y)fi (xdy)i ydi

and since i is a monomorphism, we have

(x,y)(f'-f) = yd - (xy)d + (xd)y , (8)

for all x,y E G .

Definition 6 . A normalized 2-cocycle is called a normalized 2-

coboundary if its value on (x,y) E G X G equals the right-hand

side of (8) for some d satisfying (7); the set of these is de-

noted by B2(G,A) . Two cocycles are called cohomologous if they

they differ by a coboundary.

Remark 8. It is easy to see that B2(G,A) forms a subgroup of
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Z2(G,A) (see Exercise 8), and we have shown that any extension of

G by A determines a member of the factor group Z2(G,A)/B2(G,A) ,

independently of the choice of transversal. Now let Kl and K2

be equivalent extensions, so that we have a commutative diagram

G

where e is an isomorphism. Now let T1: G - Kl be a transversal

for K1 , so that T2 = T16 is a transversal for K2 , and let

f1,f2 be the factor sets obtained from T1,T2 respectively.

Then, for all x,y E G ,

(xy)T2 (x,Y)f212 = (xi2) (YT2)

= (xTle) (YTle)

= (xr1 yT1)e

((xy)T1 (x,Y)fltl)e

(xy)Tle (x,Y)fllle

(xY)T2 (x,Y)f112 ,

proving that fl and f2 are equal. Letting E(G,A) denote the

set of equivalence classes of extensions of G by A , we thus

have a well-defined mapping

: E(G,A) -> Z2(G,A)/B2(G,A) ,

induced by the formation of factor sets. We are at last in a

position to prove the first (and only) theorem of this section; it

entitles us to refer to Z2(G,A)/B2(G,A) as the group of exten-

sions of G by A .
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Theorem 1. The mapping

: E(G,A) - z2(G,A)/B2(C,A)

induced by the formation of factor sets is a bijection.

Proof. The proof that is onto, which we tackle first, is

analogous to the construction performed in Example 1. Suppose

that f : G x G - A is a normalized 2-cocycle, and define a binary

operation in the Cartesian product C = GxA as follows:

(x,a)(y,b) = (xy,ay+b + (x,y)f)

for all (x,a),(y,b) E C . To see that this makes C into a

group, note that the associative law is a consequence of (6),
-1 -l -1

(e,0) is right identity because of (5), and (x ,-ax -(x,x )f)

is clearly a right inverse for (x,a) . It follows that this is

also a left inverse for (x,a) , and we compute that

(x-l,x)f = (x,x-1)fx (9)

for all x E G (this is just (6) with z = x, y = x-l) . As in

Example 1, we define

A: A - C p: C - C

a (e, a) (x, a) x
,

and we have an extension C of G by A , provided (3) holds.

To check this, let x E G, a E A and observe that

(x,o)-1(e,a)(x,o) = (x-1,-(x,x 1)f)(x,ax)

=
(e,-(x,x-1)fx

+ ax + (x-l,x)f)

= (ax)X ,

using (9). To compute a factor set for C , let XT = (x,0) for
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x c G and note that

(xT)(YT) = (x,0)(y,0)

= (xy, (x,y)f)

= (xy, 0) (e, (x,y)f)

= (xY)T (x,Y)fa .

It follows that C has factor set f , proving that ¢ is onto.

The rest of the proof consists of showing that extensions with

cohomologous factor sets are equivalent. Let K1,K2 be exten-

sions with transversals T1,T2 and corresponding factor sets

fl,f2 , and assume that there is a d: G -> A with ed = 0 such

that

(x,Y)(fl-f2) = yd - (xy)d + (xd)y (10)

(cf. (8)) for all x,y E G . We must construct a homomorphism 8

such that the diagram

G

commutes. Noting that a typical element of K1 has the form

(xTI)(a11) for x c G, a E A , we define 8 by

8: K1 - K2

(xT1)(a11) (xT2)(a+xd)12

This plainly makes the diagram commute and we merely have to prove

it is a homomorphism. For all x,y E G, a,b c A we have
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((xTI)(a11)(YT1)(b11))0 = ((xT1)(YT1) (.r11)
YT

1 (b11))6

= ((xY)T1 (x,Y)f111 ay11 b11)6

= (xY)T2 ((x.Y)f1+ay+b+(xy)d)12

while on the other hand,

((xT1)(a11))6 ((YT1)(b11))6 = (xT2)(a+xd)12 (YT2) (b+yd)
12

yT

= (xT2)(YT2)((a+xd)12) 2 (b+yd)i
2

= (xY)T2((x,y)f2+ay+xdy+b+yd)12

and these are equal by (10). Hence, 0 is a homomorphism and

K1,K2 are equivalent. This completes the proof of the theorem.

EXERCISE 1. Given a group G , a G-set is a set S together

with an action

such that (sx)y = s(xy) and se = s , for all s E S, x,y E G

If A is free abelian on a G-set S s A , prove that there is a

unique G-action on A which

(i) extends the G-action on S , and

(ii) makes A into a G-module.

EXERCISE 2. A G-set S is called regular if sx s for all

s E S , x E G\{e} . Invoke the Axiom of Choice to construct a

subset T S S such that T n sG is a singleton for all s E S

Prove that any mapping 0 from T to a G-module A admits a

unique extension 6': S -; A such that (sx)6' = (s6')x , for all

s E S, x E G.
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EXERCISE 3. Given groups G and A and an action of G on

A , convince yourself that a semi-direct product can be constructed

as in Example 3, even when A is not abelian.

EXERCISE 4 (see Remark 4). Prove that an extension

t v

K: 0 } A} K- G} 1

splits if and only if Ker v has a complement in K . Show also

that there is a homomorphism p: K } A such that ip = 1A if and

only if Ker v has a normal complement in K and deduce that in

this case, K is isomorphic to the direct product of G and A

EXERCISE 5 (see Remark 6). Prove that if K,L are equivalent

extensions of G by A , then K,L are isomorphic groups.

EXERCISE 6. Prove that equivalence of extensions is an

equivalence relation.

EXERCISE 7. If G is a group and A is a finite G-module,

prove that every element of Z2(G,A)/B2(G,A) has order dividing

JAI . By taking G = A = Z3 with trivial action, prove the

existence of inequivalent extensions K,L with isomorphic groups

K,L .

EXERCISE 8. Given a group G and a G-module A , prove that

Z2(G,A) is a group under pointwise addition, and that B2(G,A)

is a subgroup of it.

EXERCISE 9 (cf. Exercise 1.5). Let F be a free group and

A an F-module. Prove that B2(F,A) = Z2(F,A) .

EXERCISE 10 (cf. Exercises 1.8 and 12.1). Let S be the split

extension of G = <c I c2> by A = <a,b I > , where the action of

c is induced by transposing a and b . Prove that S is just

the group
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B = <a,b,c (ac = b, be = a, c2 = e>

EXERCISE 11 (cf. Exercise 7.7). Let p be an odd prime, let

a,b E N', and consider the action

b a+b
<ylyp > -r Aut <xlxp >

a
y (x 'xl+p )

Prove that the resulting split extension is just the metacyclic

group

pa+b -l l+pa
pbG = <x,y l x = e, y xy = x , y = e>

§18. Teach yourself cohomology of groups

We aim to put the ideas of the previous section in a broader

context, and in particular to explain how the group

Z2(G,A)/B2(G,A) of extensions of a group G by a G-module A

arises in a natural way. To do this requires a more detailed

study of abelian groups, or of modules over an arbitrary ring. We

devote the first part of this section to basic definitions and el-

ementary results, whose proofs (see Exercises 1-5) the reader is

invited to work out as he goes along. The multiplicative group G

is fixed throughout, and C-modules are written additively with C

acting on the right as in Definition 17.1.

Given a G-module B, a G-submodule of B is a subset A of B

such that

(i) A is a subgroup of B , and

(ii) A is closed under the G-action,

AG = {axla c A, xe G} SA

Because of (i), we can form the factor group B/A , and the

definition

(A+b)x = A+ bx , b e B, x e G ,

161



makes B/A into a C-module called the factor module of B by A

(see Exercise 1).

Given G-modules A and Y , a mapping 8: A -> Y is called a

G-homomorphism if

(i) 0 is a homomorphism of groups, (a+a')8 = a8+a'8 (a,a' A) and

(ii) 0 commutes with the C-action, (ax)e= (a8)x (a e A, x c G)
The image and kernel of a G-homomorphism 8: A -* Y , given by:

Im 6 = {a8 I a E A} , Ker 8 = {a e A I a8 = 0} ,

are G-submodules of Y,A respectively (see Exercises 3,4).

We write A = HomG(A,Y) for the set of G-homomorphisms from

A to Y . Under pointwise addition

A -> Y

a - a8+a

HomG(A,Y) forms an abelian group (see Exercise 5). Given a G-

module Y and a C-homomorphism 8: A - B , we define

6 = HomG(8,Y) by

8 : HomG(B,Y) - HomG(A,Y)

a F+ On

and note that this is a homomorphism of abelian groups (Exercise 6).

The operation * preserves sums, composites and identity mappings.

These are called functorial properties, expressed by

e* +
A)*

= A*

where 6,4,i are G-homomorphisms with appropriate domains and

codomains.

An exact sequence of G-modules is a collection of

G-modules {An I ne Z} and G-homomorphisms {8n: An}An-1 I nc Z}

such that Im 8n = Ker 8n-1 for all n E Z . Note that
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Im 8n c Ker 6n-I if and only if 6n0n-1 = 0 . A short exact

sequence (cf. Definition 17.2) is an exact sequence in which all

but three consecutive terms are zero. A typical short exact

sequence is usually written in the form

e
4)

0 -> A; B -> C -> 0

where the exactness means that:

o is one-to-one, 8¢ = 0 , In 6 2 Ker 4), 4) is onto.

For example, if A is a G-submodule of B , we have a short

exact sequence

inc nat
0 -; A -> B - B /A -; 0

and if A,B are any G-modules, we have a short exact sequence

0 - A -* A ®B -> B -
a (a,0)

(a,b) ' b

(1)

The latter is an example of a split short exact sequence in the

following sense: a typical short exact sequence (1) is said to

split (cf. Definition 17.3) if there is a G-homomorphism

o: C -} B such that o4) = 1C . Two equivalent definitions of

splitting are given in Exercise 8.

We now consider the effect of applying the operator Home( Y)

to the short exact sequence (1). Since 4) is one-to-one and
* *

Im 4) = Ker 6 (see Exercise 9), we write

* *

0 -> C -} B -> A

to emphasize the fact that 6
*

may not be onto (Exercise 10).

Sometimes it is however, for example when (1) splits (Exercisell).
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Definition. A G-module F is said to be free on a subset S c F

if, for any G-module A and any mapping 6: S -; A , there is a

unique G-homomorphism 0': F -> A extending 6

S `F

310

S is called a G-basis for F , and ISI the rank of F .

Remark 1. There is a close analogy between free G-modules and

free groups, and properties corresponding to those described in

§1 can be derived in similar fashion. For example, if F is

G-free on S , then no proper G submodule of F contains S

that is, S generates F as a G-module (see Exercise 13).

Remark 2. Let F,A be G-modules with F free on S , and let

is S - F denote inclusion. Consider the restriction mapping

i : HomG(F,A) -> Map(S,A)

a to

where Map(S,A) just consists of set-functions. The definition

of freeness then simply asserts that i is a bijection; in fact,

the correspondence 0 - 0' in the definition is the inverse

of i In this situation, we tend to identify HomG(F,A) and

Map(S,A) .

Remark 3. If F. is free on S. (i = 1,2) and F1 L- F2 as

G-nodules, it follows that Map(S1,A) and Map(S2,A) have the

same number of elements for any G -module A . Taking A = Z2

with the trivial G-action, we deduce that 2IS11 = 21521
, whence

is11 = IS21 , and the rank of a free G -module is well defined.

Remark 4. In similar vein, if F. is free on S. (i = 1,2) and
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IS1I = IS2I , then F1 and F2 are isomorphic as G-modules (see

Exercise 14).

Remark 5. We proceed to question the existence of free G-modules.

Given any set S , let F be the free abelian group on the

Cartesian product S x G. For any x e G, define

(s,z) H (s,zx)
}

and for any a E F , we define ax = an' E F , where a' is thex x
unique homomorphism F - F extending a

x
. To verify the three

module axioms, note first that this action is linear, since a' is

a homomorphism of groups. Next, a' fixes the generators S x C

and thus fixes everything. Finally, the homomorphisms a'c , ax'y

map (s,z) E S x G to

(s,(zx)y) , (s,z(xy))

respectively, and thus are equal.

We now relabel (s,e) E S x1e) as s , so that

(s,z) = (s,e)z = sz for z E G , and F is the free abelian

group on the set SC = {sz I s E S, z E G} . To prove that F is
G-free on S , let A be any G-module and B: S -> A any mapping.

We define

6': SG } A

sz H (sO)z }

and let 0": F -* A be the unique homomorphism (of groups)

extending 6'

S inc
SG

inc F
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Now for any x,z E C, s E S, we have

((sz)x)e" = (s(zx))e' = (se)zx = (s8z)x = (sz)8'x ,

so that x8" = 8"x , since they agree on a Z-basis. Hence, 8"

is a C-homomorphism. Finally, if two G-homomorphisms agree with

0 on S , they agree with each other on a set of G-generators and

thus are equal.

Example 1. For n a non-negative integer, we let the Cartesian

product G
n

of n copies of G play the role of S in the

above construction. As xo,...,xn-l and xo,...,xn range inde-

pendently over C , the elements

(xo,...,xn-1) and (xo,...,xn-1)xn

yield a G-basis and a Z-basis respectively for the resulting G-

free module F
n

. Defining

[x ,...,x J = (x x-1,...,x x1)x
o n o n n-1 n n

these bases can be rewritten as

[xo,...,xn-l'el and [xo,...,xn]

respectively, since as xo,...,xn range independently over G

so do the n+l coordinates of

[x x , . . . , x x ,x ] _ (x ,...,x )x
o n n-1 n n o n-1 n

(2)

In the new notation, the G-action on the Z-basis is given by

[xo,...,xnlx = [xox,...,xnx] . (3)

For n = -1 , we interpret F-1 as the free abelian group on the

singleton [ I , with trivial G-action.
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We now define 3n: Fn -> Fn-l to be the unique homomorphism

(of groups) extending the mapping

n
[xo,...,xnI y Y (-1)1[xo,...,xi,...,xnI

i=0

(4)

on the Z-basis, where ^ denotes the omission of the coordinate

beneath it. Since
3n

clearly commutes with the G-action on the

Z-basis, it must be a G-homomorphism for all n ? 0 . Note that

since [ ] _ [e]30 e Im a0 , and generates F-1 ,
D0 is onto.

Theorem 1. With the above notation, the sequence

an ao

F: ... -} Fn - Fn-1 -- ... 3 F0 -

F-1 } 0 (5)

is exact.

Proof. Having just observed that 3
0

is onto, we have two

things to check, namely (i) 8n+l an = 0 and (ii) Ker 3n c Im
an+l

for all n ? 0 . Since the
3n

are homomorphisms, (i) will be

proved if we can show that
3n+lan

vanishes on a typical element

Exo,...,xn+lI of the Z-basis for Fn+l . Well, for all n >_ 0

we have:

Exo,...,xn+l13n+lan

n+l

( £

i=0
n+l

(-1)1Cxo,...,xi,...,xn+l]an
i=0
n+l

Cxo,...,x.,...,xi,...,xn+11
i=0 j<i

j-1 n
+ Y.(-I) ,xj, xn+l1)

j>1

1+ A A
(-1) [xo,..,xi,. .,xi,. .,xn+1]

0_j<i_n+l

+ 1+j-1

0<_i<j5n+1
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and by interchanging the dummy variables i and j in the second

sum, we see that this is zero.

Oddly enough, the proof of (ii) is even simpler, provided we

invoke a neat little trick. For each, n ? 0 , define

n: Fn-1 } Fn
[x0,...,xn-1] i+ [e,x0,...,xn-1] }

a homomorphism of abelian groups (though not of G-modules). From

the picture

n+l n a0

Fn+1
Fn Fn-1 ... F0 F1 -> 0

n+l n So

we have two additive endomorphisms, ansn and 8n+13n+1 of Fn

for each n ? 0 ; we apply their sum to a typical member

[xo...,XnI E Gn+l

Exo,...,xn](ann + Sn+l an+1)

n
1(-I)[xo,...,xi,...,xn7Rn + [e,xo,...,xn]8n+1

i=0
n

_ (-1)1[e,x ,...,x .,...,x ] + [x ,...,x ]
o n

o '...'x

i=0
n

+C i1 A

o i n
i=0

= [xo,...,xnI .

Since anion + Sn+ln+l fixes a basis, it must be the identity on

Fn , and so for any a E Ker an , we have:

a = aansn + asn+lan+l - (asn+l)an+l E Im an+I

as required.

An exact sequence of free G-modules ending in Z is called a

G-free resolution of Z ; the example (5) just constructed is

called the bar resolution, and was inspired by homological con-
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siderations in algebraic topology. Our next aim is to take a

G-module A and apply the operator * = HomG( A) to the resol-

ution (5), but before doing so, we adjust our notation for the

G-bases used for the Fn's . As xl,...,xn range independently

over G (n ? 0) , so do the n coordinates of

(x1,...,x
n

) := E x
2 * * * n " " '

,

so that these elements comprise a G-basis for Fn . Taking a

fixed G-module A , the elements of

Fn = HomG(FA)

correspond to set-functions from this G-basis into A in accord-

ance with Remark 2 above. We now compute the effect of
* x(n-1)

an = HomG(an,A) on a typical member of Hom(G A) in the

sequence

*
a* * n

F ... ± F f F F ... F
n n-1 F0

Lemma 1. For n 'e? 1 and f e
Hom(Gx(n-1),A)

, the mapping
* xn

fan E Hom(G ,A) is given by:

n-1

(xl,...,xn)fan = (x2,...,xn)f +

Proof. We compute that

*
(xl,...,xn)fan = [xl...xn,...,xn,elanf

n
C (-1)i-1 Exl...xn,...,xi...xn,...,xnelf

i=1

+ (-1)n[x1...xn,...,xnIf

(6)
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n i-1
(x2,...,xn)f + X (-1) (xl,...,xi-lxi,...,xn)f

i=2

+ (-1)n(Cxl...xn-1,...,elxn)f

n-1

(x2,...,xn)f + (-1)i(xl,...,xixi+l,...,xn)f
i=1

+ (-1)n(xl,...,xn-1)fxn

replacing i by i+l in the summation.

By force of tradition, we define a
0

= 0 , and observe that by

the functorial properties of
*

, we have

nn+l = (an+l an)
= 0 = 0

*
and the question arises as to by how much the sequence F fails

to be exact. The answer is provided by the groups

Hn(G,A) = Ker an+l / Im an n ? 0 ,

called the cohomology groups of G with coefficients in A . The

methods of homological algebra show that these groups are indepen-

dent of the choice of free G-resolution used to define them,

though it is beyond our scope to prove this here. We content our-

selves instead with a closer look at what happens for small values

of n .

Example 0. The G-basis for F
0

consists of the singleton

Eel = ( ) , so that mappings from this into A simply correspond

to members of A :

*
F
0

f 1 ( )f

With this identification, a member a =( )f E A lies in

Ker al = H°(G,A) if and only if, for all x c G
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0 = (x)fal = ( )f - ( )fx = a - ax f

using Lemma 1. This simply asserts that a belongs to the

G-trivial submodule AG of elements of A fixed by all x E G

In particular H°(G,Z) = ZG = Z .

Example 1. A mapping f: G -> A is in Ker a2 if and only if,

for all x,y E G :

0 = (x,Y)(fa2) = (Y)f - (xy)f + (x)fy

that is (omitting the brackets),

(xy)f = yf + (xf)y .

Such mappings are called crossed homomorphisms from G to A ,

and are just ordinary homomorphisms when the G-action is trivial.

Similarly, f: G -> A is in Im al if and only if there is an

a = ( )f' E A such that, for all x E G ,

xf = (x)(f'al) )f' - ( )f'x = a(e-x)

Crossed homomorphisms of this type are called principal. When

the G-action on A is trivial, Im al = {0} and H1(G,A) just

consists of group homomorphisms. As a special case, H1(G,Z) is

trivial for finite G .

Example 2. A mapping f: G x G -> A is in Ker a3 if and only

if, for all x,y,z E G :

0 = (x,y,z)(fa3) _ (y, z)f - (xy,z)f + (x,yz)f - (x,y)fz (7)

which is precisely the condition 17.(6) that f be a 2-cocycle.

Similarly, f E Im a2 if and only if there is a mapping d: G -* A

such that, for all x,y E G ,
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(x,y)f = (x,y)(da2) (y)d - (xy)d + (x)dy (8)

which is the condition 17.(8) that f be a 2-coboundary. Thus,

Z2(G,A) consists of the normalized members of Ker a3 , and

B
2
(G,A) consists of the members of Im a2 that are images of

normalized mappings: G -} A . We now complete the final step in

the identification of H2(G,A) with the group E(G,A) of

extensions of G by A .

Theorem 2. The groups Z2(G,A)/B2(G,A) and H2(G,A) are

isomorphic.

Proof. The inclusion of Z
2
(G,A) in Ker a3 obviously maps

B
2
(G,A) into Im a2 , and we merely have to show that the

resulting induced homomorphism

Z2(G,A) } Ker a3

B2(G,A) Im 82

is a bijection. Now

Z2(G,A) n Im a2 Z 2(G,A) + Im a2
Ker ip = 2 Im *

B (G,A) Im a2

so we have to show that

2 2
(i) Z (G, A) n Im 82 s B (G, A) , and

(ii) Z2(G,A) + Im B. ? Ker a3

To prove (i), let f: Gx G + A be a normalized mapping satis-

fying (7) and (8). Then, from (8),

0 = (e,e)f = (e)d - (ee)d + (e)de = (e)d ,

showing that f = d82 with d: G - A normalized, that is,

f E B2(G,A) . For (ii), let f: G x G -} A satisfy (7), so that,

taking (x,y,z) = (e,e,y),(x,e,e) respectively, we have
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0 = (e,y)f - (e,e)fy = (e,e)f -(x,e)f . (9)

Now let d: G -} A be the constant mapping sending all x to

(e,e)f . The mapping f ' = f -dal: G x G -> A obviously belongs
to Ker a3 , and is given by:

(x,y)f' = (x,y)f - (e,e)fy .

Because of (9), f' is normalized, and we have

f = f' +da2 E Z2(G,A) +Im a2

as required.

Example 3. When G is finite and Z has the trivial G-action,

the group H3(G,Z) also boasts a purely group-theoretical sig-

nificance. Given a finite presentation <XI R> for G , let F

be the free group on X , and R the normal closure of R in

F . Denoting by [F,R] the subgroup of F generated by the

commutators {[f,r] I f E F, r } , it is clear that [F,R] s F'

and also [F,R] 5 R , since R is normal. Since R' s [F,R]

the group

M(G) = (F' n R) /[F,R]

is abelian; it turns out that M(G) is finite, and is independent

of the presentation used to define it. M(G) thus depends only

on G , and is called the Schur multiplicator of G (cf. the

beginning of Chapter III). Though it is beyond our scope to prove

it here, the groups M(G) and H3(G,Z) are isomorphic for

finite G .

EXERCISE 1. Given an inclusion of G-modules A c B , check that

the definition of the factor module B/A makes sense.

EXERCISE 2. Concoct a reasonable definition of the direct sum of
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G-modules Al,...,An .

EXERCISE 3. Given a G-homomorphism 0: A - Y , prove that

Im 0, Ker 8 are submodules of Y,A , respectively.

EXERCISE 4. Think of some isomorphism theorems for abelian

groups, then state and prove their analogues for G-modules.

EXERCISE 5. Check that HomG(A,Y) forms an abelian group under

pointwise addition.

EXERCISE 6. Given G-homomorphisms 8: A -> B, a,s: B -> Y, check

that a8*:= 8a E HomG(A,Y), and that (a+s)8* = a8* + S8* .

EXERCISE 7. Check the three functorial properties of

* = HomG( Y) .

EXERCISE 8. Prove that the following three conditions on the

short exact sequence (1) are equivalent:

a) there is a o E HomG(C,B) such that a = 1G

b) Im 0 = Ker is complemented as a G-submodule of B

c) there is a p E HomG(B,A) such that 8p = 1A .

EXERCISE 9. Prove that the result of applying the operator

* = HomG( Y) to the short exact sequence (1) is a sequence (1)*

such that

0 = Ker * , Im * = Ker 0* .

EXERCISE 10. Noting that E-modules are nothing but abelian

groups, concoct an example with A = C = Y = Z2 to show that 0*

may not be onto in (1)*.

EXERCISE 11. Given that the short exact sequence (1) is split

by a: C -; B , prove that 0* is onto in (1)*, and use Exercise 8

to show that the resulting short exact sequence also splits.

174



EXERCISE 12 (cf. Exercise 1.1). If S is a subset of a G-

module A , prove that <S> consists of finite sums of members

of SG .

EXERCISE 13 (cf. Theorem 1.1(i)). If F is a G-module free

on S , prove that F is generated by S .

EXERCISE 14. If F1,F2 are G-modules with Fl free, then

F1 F2 if and only if F2 is free and has the same rank as F1

EXERCISE 15. Prove that a free G-module of rank n c N is iso-

morphic to the direct sum of n copies of a free G-module of

rank 1.

EXERCISE 16. Let A,B be G-modules and 0: A - B an additive

mapping. If S generates A as an abelian group and

(sx)0 = (sO)x for all s E S , x E C , prove that 0 is a G-

homomorphism. Is it enough to assume that S generates A as

a G-module?

§19. Local cohomology and p-groups

The construction of the bar resolution carried out in the

previous section can be modified as follows. Whereas Fn was

defined to be the group of all finite Z-linear combinations of

members of
(Gxn

)C , we now define
pFn

to be the set of all

finite k-linear combinations of
xn

(G ) G , where k = Z/pZ is the
field of p elements ( p a fixed prime). pFn is thus a vector

space over k having the elements of
(Gxn

)G as a basis in the

usual sense of linear algebra (since k is a field). Now pF
n

is clearly a G-submodule of Fn , and we can think of pF as

the factor module Fn/pFn . Proceeding exactly as before, we

rename the k-basis as in 18.(2) with G-action as in 18.(3), and

define pan the extension by k-linearity of 18.(4). That the

resulting sequence pF (see 18.(5)) is exact is proved in

exactly the same way as Theorem 18.1.
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Though the G-modules PFn are no longer free (for n ? 0), they

are still 'relatively free' (G-free mod p) in the following sense.

Firstly, p annihilates PFn . Secondly, given a G-module A

and a mapping 0: (G
xn)

-; A , consider the following diagram:

where e' is the unique G-homomorphism extending 8 . Now there

will be a 8" making this commute provided that pFn Ker 8'

and since (pFn)8' c pA , this is guaranteed if we assume that

pA = 0 , that is, A is a vector space over k . When this

happens, the induced G-homomorphism 8": PFn -> A is unique
xn

(since nat is onto). Thus, any 0: G -> A admits a unique

extension to PFn provided that p annihilates A .

Assuming that pA = 0 , we can thus identify PFn (n ? 0) with

Map(Gxn,A) exactly as before, and the formula for Pan is ident-

ical to that given in 18.(6) for an . It follows that when

pA = 0 , Hn(G,A) is isomorphic to Ker Pa* /Im Pa* . This
n+l n

approach has many advantages, for example, when G is finite, so

are all the PF . If A is also finite, then so are all the
p *

n
n

Fn , whence the H (G,A) are finite too.

We proceed to examine the whole picture from a slightly

different point of view. Let kG denote the vector space over

k with basis G (cf. Exercise 18.12), so that a typical element

of kG has the form

a = a x
xEG

x

where the ax E k and the ' denotes that only finitely many of
r

them are non-zero. Now the definition ay = E a (xy) clearly
xE G x

makes kG into a G-module, and this can be extended to an action

of kG by k-linearity, that is, if
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,a= I a x , S= b
y

y
xEG

x
yEG

we define

as = b ( I a (xy)) _ c z
yEG y xEG x zEG

z

where

cz = I b ax = a
x
b = G axbx-1z

xy=z y y=x-lz y xEG
(1)

It is easy to verify (Exercise 1) that this definition imbues kG

with the structure of a ring with identity le = 1 .

Definition. We call kG the group ring of G over k .

Remark 1. If A is a G-module with pA = 0 , we let

a = E'axx E kG operate on a E A by the rule:

as = ax(ax) .

One readily checks (Exercise 2), that for all a,b c A, a,s c kG,

(a+b)a = as + ba, a(a+S) = as + aR, a(ct ) = (aa)S, al = a,

so that A becomes a (right, unital) kG-module in the usual

ring-theoretic sense. Conversely, any kG-module becomes a G-

module simply by restricting the operators to the basis G c kG

Remark 2. Just as with any ring, the internal multiplication

makes kG into a module over itself. The result is nothing

other than pF
0

, since the mapping

kG -} pF
0

ax
x - ax [ ]x
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is easily seen to be a bijective G-homomorphism (Exercise 3).

Our notion of 'G-free mod p' thus coincides with 'kG-free' in the

ring-theoretic sense, provided the rank is 1 . That this is

true for arbitrary ranks is an easy exercise (Exercise 4). It

follows that a G-module which is free mod p is just a direct

sum of copies of kG .

Remark 3. We have shown above that when A is a G-module with

pA = 0 (that is, a kG-module), the groups Hn(G,A) can be

computed as kernels/images in the sequence obtained by applying

the operator HomG( A) to a kG-free resolution of k . It

turns out that the Hn(G,A) are independent of the resolution

used (cf. the remark following their definition on p.170); we

shall later make crucial use of this fact.

Remark 4. We now turn our attention to the G-homomorphism

1 : pFo -- pF-1 . Regarding pFo,pF-1 as kG,k respectively,

we refer to P as e , given by

e: kG - k

a x + a
x x

It is easy to show (Exercise 5) that e is a homomorphism of

rings and of kG-modules, so that U = Ker e is an ideal of kG

e is called the augmentation mapping, and U the augmentation

ideal of kC . U is variously referred to as the Magnus ideal,

difference ideal or fundamental ideal of kG . The set

{(e-x) I x e G\{e}} comprises a k-basis for U (Exercise 6), so

that dimkU = IGI -1 , and U is a maximal right ideal of kG

with kC/U = k . It follows that k is an irreducible kG-module

in the ring-theoretic sense, that is, it has exactly two kG-sub-

modules (itself and 0); for, as its k-dimension is 1, it has

no proper non-trivial k-subspace. The following striking result

is the key to the remainder of this section.
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Theorem 1. When G is a finite p-group and k is the field

of p elements, k is the only irreducible kG-module.

Proof (J.-P. Serre). Let A be an irreducible kG-module and

let 0 a E A . The set {ax Ix E GI spans a subspace B of A

with m = dimkB <- IGI . It is clear that B is closed under

post-multiplication by the elements of G (cf. Exercise 18.12),

so that the action of G permutes the members of B . If

Q1,...,Qn
are the lengths of the orbits under this action, we

have

. + fn

and each k
i

is a p-power (see Exercise 7). Since one of the

orbits consists of 0 alone, there is at least one other

singleton orbit, {b} say. Thus, bx = b for all x e G

and b x 0 , whence C = {Ab l Ac k} comprises a kG-submodule

of A . Since dimkC = 1 and G acts trivially on C , C = k

and since C a 0 and A is irreducible, C = A . Hence,

A = k as required.

Remark 5. If A is a kG-module (for arbitrary G), we let

AU denote the k-subspace of A spanned by the set

{au I a E A, U E U) , and observe that AU is a kG-submodule
of A . Because of the structure of U (Exercise 6), AU is

actually spanned by elements of the form a(e-x), a E A, x c G,

so that when G acts trivially on A , we have AU = 0 .

Conversely, if AU = 0 , then a(e-x) = 0 for all a c A, x E G,

and the G-action is trivial. It follows that G acts trivially

on A/AU , and that whenever B is a submodule of A such that

the G-action on A/B is trivial, we must have AU S B . Thus

we refer to A/AU as the largest G-trivial factor module of A

and sometimes denote it by AG (cf. Example 18.0).

Remark 6. In view of Theorem 1 and the preceding remark, it is
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clear that when G is a finite p-group, U is the intersection

of the annihilators of the irreducible kG-modules, and thus is

nothing other than the Jacobson radical of kG . Our next result

is therefore a consequence of Wedderburn's theorem, though it is

easy enough to prove from scratch.

Theorem 2. When G is a finite p-group and k is the field

of p elements, the augmentation ideal U of kG is the unique

maximal right ideal of kG ; futhermore, U is a nilpotent ideal.

Proof. A right ideal I of kG is maximal if and only if

kG/I is an irreducible kG-module. Hence, the maximality of U

follows from Remark 4, and if I were another, we would have

kG/I = k by Theorem 1. Since I +U = kG , we obtain

kG/UnI = U/UnI ® I/UnI = kG/I ® kG/U = k ® k

so that U = (kG)U c U n I (by Remark 5), and this contradicts

the choice of I ;e U .

To show that U is nilpotent, regard kG = A0 as a right

kG-module, and let AI be a maximal submodule (so that AI = U

by the above). Let A2 be a maximal submodule of A
1

and so

on. This process terminates after a finite number of steps

(IkGl is finite), and the result is a chain

kG = Ao > Al > ... > Am = {0} , (2)

for some m E N . ((2) is called a composition series for A
0

,

and Theorem 1 implies that m = IGI in this case.) Now each

A./A.1
,
being irreducible is isomorphic to k by Theorem 1

and so, by Remark 5, is annihilated by U . Hence,

AiU S Ai+l , 0 <_ i <_ m-1 ,

and so
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U1 = U1kG = U1Ao Ai m ,

and in particular, Um = {0} as required.

Theorem 3 (Burnside Basis Theorem for kG-modules). Let G be

a finite p-group, k the field of p elements, and A 0

finitely-generated kG-module. Then:

(i) The set AU of all finite sums of elements of the form

au , a E A, U E U, is equal to the intersection (A) of all

maximal kG-submodules of A .

(ii) A subset S = {a1,.... aQ} generates A over kG if

and only if the set

S+ = {a. +AU 1 1 < i < t}
1

spans A/AU as a k-space.

(iii) Setting d(A) = dimkA/AU , A has a presentation

v : F --0 A (3)

with F kG-free of rank d(A) .

(iv) In any free presentation (3) with F of kG-rank d(A)

we have Ker v s FU .

Proof.

(i) Let M <_ A be maximal, so that A/M = k by Theorem 1, and

as above we deduce that AU 5 M . Hence AU s (D(A) . For the

reverse inequality observe that every element of A/AU is fixed

by every element of G , and so A/AU is nothing more than a

vector space over k , and every subspace of it is a kG-submodule.

Since A is finitely generated over kG , and thus finite dimen-

sional as a k-space, A/AU also has finite k-dimension. Let

B = {b1,...,bf}

be a basis for A/AU and let Ai/AU be the subspace spanned by
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B\{bi} . Then each Bi/AU is a maximal subspace (submodule)

of A/AU , and

k

n A
i
/AU = {AU}

i=1

Q

Thus, AU = n Ai , an intersection of maximal submodules of A
i=l

(ii) The necessity of the condition is obvious. For the suf-

ficiency, assume that S+ spans A/AU over k and let B be

the kG-submodule of A generated by S , so that B+ AU = A

Now if B < A , B lies inside some maximal submodule M of

A , and we have

A = B+AUSM + (D(A) = M<A,

by part (i). So B = A as required.

(iii) Letting {ai +AU I 1 5 i 5 d} be a k-basis for A/AU , so

that d = d(A) , it follows from (ii) that the set {al,...,ad}

generates A over kG . Thus the mapping

F = kG ® ... ® kG -* A

ddC(Y1,...,Yd) Fr
aiyi

i=1 11

with F kG-free of rank d , is a kG-epimorphism and will do

for v .

(iv) Take a free presentation of A of the form (3) and con-

sider the composite

v nat
F -* A -- A/AU

call it 6 , say. Now FU 5 Ker 6 , and

F/Ker 9 Im 8 = A/AU
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has k-dimension d = d(A) = dimkF/FU , by hypothesis. Thus

FU = Ker 8 , and it suffices to prove that 0 annihilates

Ker v , which is already obvious.

Theorem 4. When G is a finite p-group and k is the field of

p elements, there is a kG-free resolution

an al Do

Mn Mn-1 ' ... Ml -} M0 -> k -> 0 (4)

of k such that Mn has kG-rank equal to dimkHn(G,k) .

Proof. Before embarking on the proof, note that Hn(G,k) is a

subfactor of HomkG(Mn,k) by Remark 3, and the dimension of this

is just the kG-rank of M
n

; thus the resolution (4) is minimal

in the strongest possible sense. We define a resolution induc-

tively as follows. Put M
0

= kG , a0 = c in accordance with

Remark 4. Assume inductively that an is defined for some

n ? 0 , and let an+l be the composite

inc
Mn+l _-0* Ker an -- Mn

where Mn+l is kG-free of rank d(Ker an) and vn+l is given

by (3).

In accordance with the remark at the beginning of the proof,

it is sufficient to prove that a
n

= 0 for all n , where * is

the operator HomkG( k) . To this end, let 0 E HomkG(Mn,k)

n ? 1 , so that Dan+l = an+l0 , which is just the composite

vn+l inc e
Mn+1 -- Ker an -} Mn - k

Since k is G-trivial, M
n
U < Ker 0 , and

Im vn+l = Ker an = Ker vn <_ M
n
U ,

by applying Theorem 3(iv) to the presentation v: M -- Ker an n
n-1*

Thus, Dan+l = 0 and an+l is trivial for n ? 1 . That ai = 0
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follows in a similar way, since any 6 e HomkG(M0 k) has

U = Im a1 in its kernel. This completes the proof of Theorem 4.

Remark 7. We know (cf. Exercise 18.5) that each Hn(G,k) is a

vector space over k and as such is specified by its dimension.

From Example 18.0 (or Theorem 4 above), we see that

dimkH°(G,k) = I . The numbers

d(G) = dimkV1(G,k) , r(C) = dimkH2(G,k) (5)

will play a vital role in the next section. Now it follows from

Example 18.1, that HI(G,k) is just the group Hom(G,k) of homo-

morphisms from G to (the additive group of) k .

Now as a group, k is cyclic and has order p , so that for

any 6 E Hom(G,k) , both G' and the subgroup Gp , generated by

pth powers of members of G , belong to Ker 6 . Hence,

H1(G,k) c Hom(G,k) = Hom(G/G'G1,Zp) ,

and since G/G'Gp is elementary abelian (that is, a k-space), we

see that d(G) is just dimkG/G'Gp , the minimal number of gener-

ators of G as a group (see Exercise 11). On the other hand, the

construction of the minimal resolution (4) shows that

d(G) = d(Ker a0) = dimkU/U2 . (6)

Exercise 12 contains an explicit isomorphism between the groups

G/G'Gp and U/U2

EXERCISE 1. Check the ring axioms for kG .

EXERCISE 2. If A is a G-module with pA = 0 , check that

extending the G-action by linearity makes A into a kG-module.

EXERCISE 3. Check that kG and pF
0

are isomorphic as kG-

modules.
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EXERCISE 4. Verify that the notions 'G-free mod p' and 'kG-free'

coincide.

EXERCISE 5. Check that the augmentation mapping c: kG -> k is

a homomorphism of rings and of kG-modules.

EXERCISE 6. Verify that U = Ker 8 has the elements

{e-x I xE G\{e}} as a k-basis.

EXERCISE 7 (Orbit-Stabilizer Theorem). If a group G acts as a

permutation group (not necessarily faithful) on a set S , we de-

fine, for each s E S :

Ls = {sx I x E G} S S , the orbit of s , and

G = {x E G I sx = s} G , the stabilizer of s
s

Prove that Gs is a subgroup of G , and that IG:GsI = IL sI .

EXERCISE 8. For G a finite p-group, prove that kG has a

unique minimal right ideal and describe it.

EXERCISE 9. Prove that for any non-trivial finite p-group G

the groups Hn(G,k) are all non-trivial.

EXERCISE 10. Let G be a cyclic group of p-power order. Prove

that U 5 kG is a homomorphic image of kG by finding a suitable

kG-generator. Use this fact to write down a minimal kG-free

resolution of k , and compute the groups Hn(G,k) .

EXERCISE 11 (Burnside basis theorem for p-groups; cf. Theorem 3

and Remark 7). Let G be a finite p-group. Using the fact

that Z(G) z E , prove that every maximal subgroup is normal and

has index p . Defining the Frattini subgroup (P(G) of G to

be the intersection of the maximal subgroups of G , show that

(P(G) =,G'Gp . Deduce that a subset X generates G if and only

if the cosets {4)(G)x I xE X} span as a k-space.
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EXERCISE 12. Prove that the mapping

G/G'Gp -} U/U2

G'Gpx i+ (x-e) +U2

is an isomorphism of groups.

§20. Presentations of group extensions

The process of writing down a presentation for a given extension

in terms of presentations of its two components is embodied in a

fairly elementary piece of folk-lore, whose quantification yields

a twofold harvest in the theory of finite p-groups.

First of all, we forge a vital link between cohomology theory

and the theory of group presentations by deducing that, when G

is a finite p-group and k = GF(p) , any presentation of G in-

volves at least r(G) = dim,H2(G,k) relations. As a consequence

of the theorem on minimal resolutions in §19, we then obtain an

innocent-looking exact sequence of kG-modules, which nevertheless

provides the key to the central result (921) of this chapter.

Secondly, we obtain as a bonus a fairly accurate upper bound for

the number of groups of a given prime-power order.

We begin by crystallizing the folk-lore referred to above.

To this end, let G and A be groups with given presentations

G = <XIR> , A = <YIS> ,

and let

t _ v

1 > A -> G- G- 1

be a fixed extension of G by A . Let

Y = {y=ytIYEY} ,

and let S = {s I S E S} be the set of words in Y obtained from
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S by replacing each y by y wherever it appears. On the

other hand, let

x = {X I X E X}

be members of a transversal for Im i in G such that xv = x

for all x E X . Furthermore, for each r E R , let r be the

word in X obtained from r by replacing each x by x . Now

v annihilates each r , and so for all r E R

r c Ker v = Im i

and since Im i is generated by the set Y , each r can be

written as a word - say yr - in the y . We put

{rvrl IrER}

Finally, since Im i a G , each conjugate

X-lyx, x E X, y E Y,

belongs to Im i , and so is a word - w say - in the y .

x,y
Putting

T = {x 'yxw ` I x E X,y E Y}x,y

we have the following result.

Theorem 1. The group G has a presentation

<X, YIR, S, T> (1)

Proof. Letting D be the group presented by (1), it follows

from the fact that all the relations in (1) hold in G that there

is a homomorphism
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by the Substitution Test. The restriction of 0 to the subgroup

<Y> of D gives rise to a homomorphism

el <Y> i Im 1 = A

y l Y IlI

and since the defining relations S of A (with each y replaced

by y ) all hold in <Y> <_ D , 0l must be a bijection. Now the

presence of the relations T in (1) means that <Y> is a normal

subgroup of D , and since <Y>0 <_ Im i , 0 induces a homomor-

phism

02: D/<Y> + G/Im i = G

<Y>x 1 ) x
I

Now the relations R defining C all hold (with x replaced

by <Y>x ) in D/<Y> , so 02 must be a bijection. We thus have

a commutative diagram

1 v1- oA-P G

21011 001in nat
1-11<y>- OD--PD/<Y> -01

with exact rows. Since 61 and 02 are isomorphisms, it follows

as in Remark 17.6 that 0 also is an isomorphism. This proves

the theorem.

In order to tie this up with the extension theory of §17, we

now introduce a few constraints. For the sake of ease of compu-

tation, these constraints are somewhat more stringent than is

necessary at this stage. We shall assume then that

(i) G is finite,
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(ii) A is finite and cyclic,

(iii) G is a central extension, that is, the G-action on A

is trivial.

We shall take fixed finite presentations

G = <XIR> , A = <clcR>

for C and A , where

X = {xi 1 1 5 i <- n} , R = {r . 1 l <_ j <_ m}

Let have the normalized factor set

f: GxG } A ,

so that G is the set of ordered pairs {(x,a) I X E G,a e A}

with multiplication

(x,a)(y,b) = (xy,ab.(x,y)f)

in accordance with Theorem 17.1.

We thus have an extension

i _ V

1 A -* C -> G; 1

with

ai = (e,a) , (x,a)v = x

for a c A and X E G. Furthermore,

c = (e,c), xi = (xi,e)

(2)

for 1 <_ i 5 n . With the above notation, we now have that for

all x E X
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w cx'c

since the extension is central. Also, for each r
J

. in R

J

where 2.
J

is an integer determined modulo 2

Theorem 1 now asserts that

G = <X,cIR,T,c2>

where

X = {xi l<_ i<_n}

R={rj 311<_j<_m} ,

T = {Cc,xi]
I

1<_i<_n}

(3)

This all boils down to the fact that the given factor set

f: Gx G - A determines an m-tuple (21,.... 2m) of integers

modulo 2 . Thus, if V
m

denotes the additive group of all such

m-tuples, we have a function

n: Z2(G,A) } V
m

f H (21,...,2m)

Theorem 2.

(i) The function n of (4) is a homomorphism.

(ii) Ker n <_ B2(G,A)

(iii) IH2(G,A)l <
m

(4)

Proof.

(i) To prove this, we must examine more closely the role played

by the factor set f . For a fixed j between 1 and m , let
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rJ = S1 ..* st

be a reduced word in X u X-1 . Writing, for 1 <_ i < n ,

(xil) = x. = (xil,(xi,xi1)f-1)

we have that

r = sI ... st
t l,i-1= (sl,e) ... (st,e)(e, II' (ss)f)

i=1
t-1 t

= (s1 ... st, II (s1 ... si,si+l)f. IT, (si,si)f-1)
i=1 i=1

using the fact that f is normalized and letting H' signify

that the product is to be taken only over those s. which belong

to X
1

. It follows that R,

J

. is given by

Q. t-1 t _

c 11 (sI ... si,si+1)f.IT (sil,si)f-l

(5)l

The point is that the right-hand side of this equation is linear

in f , which proves that n is a homomorphism.

(ii) If all the Q are 0 , the relators r all hold in G ,

so that the mapping

X -

X. H
i

X

extends to a homomorphism - o say - from G to G , with the

property that ov = 1G . That f E B(G,A) now follows from

Remarks 5, 7 and 8 of §17.

(iii) We have:

2 IZ2(G,A)I IZ2(G,A)I mIH (G,A)I = 2 < = IIm nl <- IVmI = Q 6)
IB (G,A)I IKer nI
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Remark. It is not too hard to deduce from equation (5) that

Ker n = B(G,A) if and only if the exponent-sum of each xi in

each r.
J

is divisible by k . It follows from the Burnside

Basis Theorem (Exercise 19.11) that this condition holds when C

is a p-group with X irredundant. Criteria for the second

inequality in (6) to be an equality are much harder to find, even

for p-groups. Whether every finite p-group has a set of defining

relations such that (6) is an equality is an unsolved problem, and

forms the subject of §22.

Theorem 3. Let G be a finite p-group and let

r(G) = dimkH2(G,k) .

Then any presentation of G needs at least r(G) relations.

Proof. This is simply a restatement of Theorem 2(iii) with

k = p .

Theorem 4. For any finite p-group G , there is an exact

sequence

a R

A } B } U } 0

of kG-modules, where

(i) U is the augmentation ideal of kG

(ii) A,B are kG-free, of ranks r(G),d(G) respectively,

(iii) Im a E BU .

Proof. Since

d(G) = dimkH1(G,k) , r(G) = dim,H2(G,k)
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(see 19.(5)), this sequence is merely a piece of the minimal kG-

free resolution of k constructed in Theorem 19.4. That

Im a S BU is a consequence of the construction (part (iv) of

Theorem 19.3) and is proved as follows, remember. Since R is

onto, so is the composite S' :

nat
B } U - U/U2

It is clear that BU S Ker S' , and since

dimk B/Ker S' = dimk U/U2 = d(G) = dimk B/BU

we must have BU = Ker R' . Hence,

Ima=Ker 8c Ker S' =BU ,

as required.

Having paved the way for the next section, we conclude this

one by finding two bounds of independent interest.

Theorem 5 (J.A. Green). If C is a p-group of order pa , then

r(G) <_ a(a+l)/2 .

Proof. By Theorem 3, it will be sufficient to show that G has

a presentation with a generators and a(a+l)/2 relations. We

prove this by induction on a , the case a = 1 being trivial.

Assume the result for some a ? 1 and let G be a group of

order pa+l . By elementary group theory, G has a central sub

group A of order p , and thus is an extension of G = G/A

by A :

inc nat
1 + A -* G -} G -> 1

Taking presentations <clcp> and <xl,...,xa I rl, ...'ra(a+l)/2>

for A and G , Theorem 1 yields a presentation for C on a + 1

generators and
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a + l + a(a+l) /2 = (a+l) (a+2) /2

relations. This proves the claim and hence the theorem.

Theorem 6. Up to isomorphism, the number of groups of order p

is at most
p(a3-a)/6

a

Proof. The proof is by induction on a , the result being ob-

vious when a = 1 . A result from elementary group theory asserts

that any finite p-group G has non-trivial centre, whence it

follows that G has a central subgroup, A say, of order p

Assuming the result for some a ? 1 , let G have order pa+l

and consider the extension

inc nat
1 -> A + G - G/A - 1 (7)

Now let na be the number of groups of order pa , and recall

that equivalent extensions yield isomorphic groups. Since every

G of order pa+l is a central extension of the form (7) with

A k , it follows that

na+l 5 na.IH2(G/A,k)I .

Using the inductive hypothesis and the preceding theorem, we have

<
p(a3-a)/6

pa(a+l)/2na+l

= p((a+l)3-(a+l))/6

as required.

EXERCISE 1. With the notation of the remark following Theorem 2,

use formula (5) to show that Ker n = B2(G,A) if and only if the

exponent-sum of each x. in each r. is divisible by k .

EXERCISE 2. Let G be a finite p-group and let
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1 } Z > G G > 1
p

be an arbitrary extension of G by Z
P

. Prove that either

G c G x Zp or d(G) = d(G) .

EXERCISE 3. Let G be a finite p-group and let

1 = Go < G 1 < ... <Ga=G

be a normal series for G such that each factor Gi/Gi_1 has

order p . The factor Gi/Gi_1 is said to be complemented if

(8)

Gi/Gi_1 has a complement in G/Gi_1 . Prove that the number of

complemented factors in any series of the type (8) is equal to

d(G) .

EXERCISE 4. Let G = <XIR> be a finite p-group with

IXI = d(G) . Use Exercise 19.11 to show that the exponent-sum

of each generator in each relation is a multiple of p .

EXERCISE 5. Let O(G) denote the intersection of the maximal

subgroups of an arbitrary group G . An element x of C is

called a non-generator of G if, whenever S c G is such that

G = <S u {x}> , then G = <S> already. Prove that the set of

non-generators of G is precisely 4)(G) .

EXERCISE 6. Show that the group

<x,Y,z I Cx,Y7 = zn , Cy,z] = xn , Cz,x] = yn = e>

where n e N , is a split extension of Zn by an abelian group

of order ±((1+in)n-1)((1-in)n-1) , where i v"l

EXERCISE 7. Show that the mapping that inverts the generators

195



is an automorphism of the von Dyck group D(k,m,n) . Prove that

the corresponding split extension of Z2 by D(k,m,n) is

nothing other than the triangle group A(k,m,n) .

EXERCISE 8 (see §9). Let 8 be the automorphism of the

Fibonacci group F(2,n) given by permuting the generators in

accordance with the cycle (1 2 ... n) . Use Theorem 1 to find

a presentation of the corresponding split extension E(2,n) of

Zn by F(2,n) .

EXERCISE 9. Apply Tietze transformations to the result of

Exercise 8 to deduce that

E(2,n) = <x,yj x2y = y2x, yn = e>

Derive a similar presentation for the corresponding extension

E(r,n) of Zn by F(r,n) , (r ? 3) , and describe E(r,n)
ab

(9)

EXERCISE 10. In the group presented in (9), prove that xn = e

when n is even.

EXERCISE 11. If Ln denotes the cyclically-presented group

G2n+3(x
-1

x2xn+4 ) ,
prove that Lnb is finite and 3-generated

for all n ? 0

EXERCISE 12. Consider the split extension Dn of Z2n±3 by

Lnb induced by the cycle 8 = (1 2 ... 2n +3) . As in

Exercises 7,8, find a presentation for D
n

, and use Tietze

transformations to reduce it to the form

n n+l n n+l
<x,y l x yxy , y xyx >

EXERCISE 13. For r c Z, r ? 2, let H denote the additive

group {k/rk I k e Z, k E N}, so that Hr lies between Z+ and

Q and is not finitely generated. Find a presentation for Hr
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EXERCISE 14. For r e Z, r ? 2, consider the group

G = <x,y I y-lxy = x
r
> of Exercise 7.2. Prove that G' isr r

isomorphic to the group Hr of the previous exercise.

EXERCISE 15. Use the exact sequence of Theorem 4 to prove that

r(G) ? d(G) for any finite p-group G . Use Theorem 3 to

deduce the result of Theorem 6.7 for finite p-groups.

EXERCISE 16. By adjoining suitable relations, show that the

group

2 2G1 = <c1,c2,c3,c4Ic1 = c2 = c3 = c4 = e,c1c2c3c4 = c
2
c

4
c Ic

3
=c

4
c

3
c

2
C

1
>

has Dro = Z2 *Z
2

as a factor group.

EXERCISE 17. Show that the group G1 of the previous exercise

has an automorphism of order 5 mapping

cl F c2, c2 '
c3,

c3 H c4, C4 H clc2c3c4 ,

and use Theorem 1 to show that the resulting split extension

of Z5 by G1 has a presentation

G2= <c,dIc2=d5= (cd)5= (cd2)5=e>

G2

EXERCISE 18. Prove that the group G2 of the previous exercise

is generated by d and cd3c .

EXERCISE 19. Show that there is a homomorphism from the Fibonacci

group F(2,8) onto the group G2 of the previous exercise, and

deduce that F(2,8) is an infinite group.
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§21. The Golod-Safarevic theorem

Theorem 1 (E.S. Golod and I.R. Safarevic). Let G be a finite

p-group with d = d(G) and r = r(G) . Then r > d2/4 .

Proof. The proof is founded on the exactness of the sequence

a R

A - B - U -} 0 (1)

of kG-modules, derived in Theorem 20.4, with A and B kG-free

of ranks r and d respectively, and

Im a <_ BU . (2)

We proceed in three steps.

(i) For k = 0,1,..., we define

At = {a c A I as E BUQ) ,

the pre-image of BUQ under a . Since (AQ)a <_ BUQ and
Q Q+1

(BU ) 5 U , we have a sequence

0 -> A /A
aQ BUQ/BUQ+1 UQ+l/UQ+2 0

, (3)
Q Q+1

for each k ? 0 , where aQ,RQ are induced by a,s respectively.

It is clear that a91 is one-to-one and that SQ is onto, and we

claim that the sequence (3) is in fact exact. To see this, ob-

serve that

Ker SQ =
BU

Q+1

while

Im at = BUQ+1

I

so that the exactness of (1) implies that of (3).

(ii) Letting U° = kG , define for each Q ? 0 ,

BUQ+1 + Ker 8 n BUQ

BUQ+l + Im an BUQ

198



R R+l
eR = dimkAR/AR+1 , dR = dimkU /U

so that

eo,el,..., and do,dl,...

are two sequences of non-negative integers, both eventually zero

since B and U are finite-dimensional over k . Note that

eo=0, do=1 , d1=d,

using (2), Remark 19.4, 19.(6), respectively. The exactness of

(3) implies that for all k >_ 0 ,

eR + dR+l = ddR
I

since B has kG-rank d . Again using (2),

(AUR)a <-
BUR+l

so that

AUR 5 AR+l
'

whence for all k ? 1 ,

r(d+...+dR-1) ? e0 + ... + eR

(iii) Define two polynomials

g(t) _ eRt' , f(t) _ d91 tR

R?0 R?0

Now (5), together with the fact that d0 = 1 , implies that for

all real t ,

(4)

(5)

(6)
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tg(t) + (f(t)-l) = dtf(t)

while from (6) and (4),

rtf(t) > g(t)
1-t - 1-t

for 0 < t < 1 . Eliminating g(t) from (7) and (8), we have

(rt2-dt+l)f(t) >_ 1

for 0 < t < 1 , and since f(t) is positive in this range,

rt2-dt+l > 0

(7)

(8)

(9)

for 0 < t < 1 . Now the minimum of the quadratic rt2 - dt + 1

occurs at t = d/2r , and since G is non-trivial,

2r > r ? d ? 1 ,

using the exactness of (1). Thus the minimum value of this

quadratic occurs in the interval (0,1) , where it takes only

positive values by (9). It is thus positive everywhere and so

has no real root. Hence the discriminant d2-4r must be

negative, which proves the theorem.

Theorem 20.3 now yields the following corollary free of charge.

Theorem 2. If G is a finite p-group with presentation <XIR>

then IXI ? d(G) and IRI > d(G)2/4 .

We conclude this section with an example.

Example 1 (A.I. Kostrikin). This example is designed to give

some idea of the accuracy of the bound in Theorem 2. We merely

state the properties of the groups involved, confining their

proofs to the exercises. For n e N , and p a fixed prime,

consider the group
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Kn = <X,Y (R,S,T>

where

X = {xl,...,xn} , Y = {y1,...,yn}

R = {x? = yp = e 1

1 5 i <_ n}

S = {[xi,yj] = e I 1 <_ i,j <_ n} ,

T = {[xi,xj] = [yi,yj] 11 <_ i < j <_ n} .

It is plain that
Kab

is the direct product of 2n copies

of Z , whence d = d(K ) = 2n . The number of relations
P 3

i nvolved is given by r = 2(n2+n) . Hence,

r=8d2+4d

showing that the bound r > 1 d2 is reasonably accurate,

providing we can show that the Kn are all finite p-groups. It

follows from the relations S and T that any (left-normed)

commutator of weight three in the generators must be the identity.

That is, Kn has class at most 2 , or equivalently, K' < Z(Kn)

Thus, if a,b are any pair of generators, we know that a com-

mutes with [a,b] = a-lab , whence a commutes with ab . Hence,

[a,b]p =
(a-lab)p

= a p(ab)p = a p(ap)b = e

because of the relations R . It therefore follows from what has

been said that K' has exponent at most p . Furthermore, since
n

K' is generated by the [a,b] , a,b E X uY (since these are all

central, no conjugates are involved), it follows that K , and
n

hence K , must be finite. A simple computation shows that IK I

is a divisor of
pn(n+3)/2

, as required.
n

EXERCISE 1. We define the lower central series {yn(G) In E N}

of a group G as follows:
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Y1(G) = G , Yn+1(G) = <[x,y],x E Yn(G),y E G> , n >_ 1 .

if there is an n E N for which Yn+l(G) = E , then G is said

to be nilpotent, and the least such n is called the class of C

If G is a group of order pa ( p a prime, a E N, a >_ 2), prove

that G is nilpotent of class <- a -1 . For which a is this

bound achieved?

EXERCISE 2. If X,Y s G such that

G = <X> , Yn(G)/Yn+l(G) = <Yn+1(G)y,y E Y> ,

prove that Yn+l(G)/Yn+2(G) is generated by the cosets of

Yn+2(G) containing the members of the set {[y,x] I yE Y,x E X}

Defining the exponent of a group to be the l.c.m. of the orders

of its elements, prove that (with the usual conventions for )

the exponent of each lower central factor

Yl(G)/Y2(G),...,Yn(G)/Yn+1(G)....

divides that of its predecessor.

EXERCISE 3 (see Example 1). Prove that IKnI = pn(n+3)/2

§22. Some minimal presentations

If G is a finite p-group, we have seen that G is minimally

generated by

d(G) = dimkHI(G,k)

elements, where k = GF(p) . The minimal number r'(G) of

relations needed to define G is achieved in a presentation with

d(G) generators (see Exercise 1), and we showed in the previous

section that r'(G) is at least as big as
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r(G) = dimkH2(G,k) .

Deciding for a given group G whether or not this bound is

achieved is in general very difficult, and the problem of deciding

whether the class

Gp = {finite p-groups CIr'(G) = r(G)}

contains all finite p-groups is unsolved.

We shall attempt to give some idea of the extent of the class

Gp , and conclude by showing that its subgroup closure contains

all finite p-groups when p is odd. Instead of working directly

with resolutions, we save space by quoting a couple of results on

the multiplicator M(G) , whose relevance to the problem is as

follows. A straightforward argument using the long exact sequence

of cohomology shows that if G is a finite p-group such that

M(G) is minimally generated by m(G) elements, then

r(G) = d(G) + m(G) . (1)

Our first step is to show that G
P

is closed under the

formation of direct products, from which it will follow that G
P

contains all finite abelian p-groups (we already know from Beyl's

theorem in §7 that all finite metacyclic p-groups belong to Gp ).

It follows from a theorem of Schur (see Exercise 3) that

m(GxH) = m(G) + m(H) + d(G)d(H) . (2)

Theorem 1. The class G is closed under the formation of
p

direct products.

Proof. Let G,H E G
p

, so that we can write

G = <XIR> , H = <YIS> ,
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with

IXI = d(G) , IRI = d(G) + m(G)

IYI = d(H) , ISI = d(H) + m(H)

Now the presentation of G xH given in §4 is

<X,Y I R,S,[X,Y]> ,

which has d(G xH) generators (see Exercise 2), and

IRI + ISI + IXI IYI = d(G) +m(G) +d(H) +m(H) +d(G)d(H)

= d(G x H) + m(G x H)

= r(GxH)

relations. Hence, G x H E Gp as required.

We now turn to a slightly more complicated construction

involving two groups G and H , called their (standard) wreath

product. We assume for convenience that C and H are both

finite, and that IHI = n , with H = {h1,...,hn} say. Then in

accordance with Cayley's theorem, any element h c H gives rise

to an element a E S
n

given by

h
1
.h = h 1.6 , 1 <- i <- n

We now define the base group B to be the direct product of n

copies of G , whereupon the wreath product G ? H is just the

split extension of H by B , with H-action given by

(3)

h(gl,...,gn) = (g -1,...,g _1)
to no

n
h c H,

$1' ...'gn E
G . Thus, G ? H is a group of order nIGI
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and we illustrate its importance by giving some examples (see also

Exercises 4,5,6).

Example 1. If G is abelian, so is the base group B , and the

action of H imbues it with the structure of an H-module (§17).

If G is actually cyclic of prime order p , the base group is a

kG-module, and as such is free of rank one.

Example 2. When G = H = Z2 , it is clear that G I H is a non-

abelian group of order 8 with at least three involutions

(B = Z2x Z2) , whence it must be D4 . Turning to presentations,

we obtain the following more illuminating perspective. Putting

G = <ala2> , H = <xlx2> ,

and

B = G x G = <a,b I a2 ,b2, (ab) 2>

the action of G on B is given by

ax =
b , bx=a,

and Theorem 20.1 yields the presentation

GIH = <a,b,xIa2=b2=(ab)2=e,x2=e,ax=b,bx=a>

The last relation is superfluous, and the second to last can be

used to eliminate b

Now x2 = e , so b = xax and, on substituting for b , the

relation b2 = e becomes superfluous, while (ab) 2 = e becomes

(ax)4 = e . Hence,

G I H = <a,x I a2 = x2 = (ax) 4 = e>

and this is just D(2,2,4) = D4 .

205



Example 3. Consider the set of ordered pairs

Qp = {(i,j) I
1 5 i,j 5 p}

where p is a prime, and let

R1, ... , Rp, e : S2P -
QP

be the bijections given by:

(i,j),j x k,
(i,j+1),j < P,

(ilj)Sk = (i+l,j),j = k,i < P, (i,j)8 =

(l,j),j = k, i = p, (l,l),j = P

Since the Sk are disjoint p-cycles, they generate in S
P
2 a

subgroup B isomorphic the direct product of p copies of Zp

This is normalized by the subgroup

H = <e> = Z
P

,

since e-1Rk6
= Sk+l

(subscripts mod p). It is not hard to show

that <Sl,...,13

p
,6> is isomorphic to Z

p
2 Z

p
, and since its

order is
pp+1

, it must be a Sylow p-subgroup of S 2 .

P

Example 4. Extending the previous example, we define a sequence

{WnI n E N} of groups inductively as follows:

W1 = Zp , Wn = Wn-1 2 Zp

where p is a fixed prime. It is the burden of Exercise 7 to

show that the Wn are the Sylow p-subgroups of the symmetric

groups of p-power degree. By partitioning the set {1,2,...,n}

in accordance with the p-adic decomposition of n , it can be

shown (Exercise 8) that for any n E N , the Sylow p-subgroups

of Sn are isomorphic to a direct product of wreath powers

(the W. ) of Zp
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Although there is a neat homological argument which yields

both m(G 2 H) and a minimal presentation for C 2H (in certain

cases) at one blow, we simply quote the value of m(G2H) here,

and go on to find the minimal presentation. We impose three

extra conditions on the finite p-groups G and H :

G e Gp , d(H) = r'(H) , p is odd.

Note that, since H is finite, we have

d(H) = r'(H) ? r(H) ? d(H) ,

so that H E Gp , and also that Zp satisfies the condition

on H .

Under these conditions, we have that

d(G 2 H) = d(G) + d(H) ,

m(G 2H) = m(G) + n21 d(G)2

(4)

(5)

where n = IHI . The first of these equations comes out in the

wash, while the second is a deeper result. We now construct a

presentation for G I H by appealing to Theorem 20.1. Given that

G = <XIR> , H = <YIS> , IHI = n
I

we have the following presentation for the base group B = GXn

(see §4):

B = <X1,...,Xn I R1,...,Rn,[Xi,Xj]> ,

where the Xi are disjoint copies of X , R. is obtained from

R by substituting corresponding elements of Xi , and commutators

[Xi,X.] are included for all values of i and j such that

1 <_ i < j < n . Alternatively, X. may be thought of as the set

of those elements of GXn having an element of x in the ith
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place and all other components equal to e . Now let

Y = {hl,...,hn} , and let ai be the permutation of {1,2,...,n}

induced by h
1
, as in (3), 1 5 i 5 n . Now conjugation by the

h. merely permutes corresponding elements of the X. among
1 J

themselves, and we can write

h.X.'
Xja. , 1 5 j 5 n , 1 5 i <_ k.

1

These relations specify the action of H on B , and we have

the following presentation for C H :

G2 H = <X1,.... Xn,YIR1,...,Rn,{[Xi,X
J
.]},S,{XJhlx J}> , (6)

al

the respective ranges of the pairs (i,j) being as indicated above.

We now proceed to prune this presentation using Tietze trans-

formations. First note that al....,ak generate the regular

permutation representation of G , so that the action of G on

the sets X.
1

is certainly transitive. The generators in

X2,...,Xn are thus redundant, and since they are conjugates of

corresponding elements of Xl , the relators R2,...,Rn can also
h -1

be omitted. The relators {X.1 X. } merely serve to define
J Jai

the superfluous generators in X2,...,Xn , and so these also

disappear. Finally, the commutators {[Xi,X
J

.]} have to be

written in the form

h. h.

{[X11,X1J]
I 1 < j <_ n}

reordering and taking inverses if necessary. But these relators

are all conjugates of members of the set

h.

{[X1,x131
1

2 5 j 5 n}

and so these relators will suffice. Finally, choose a subset

L S H such that L
6L-1

= H\{e} , and replace (7) by the set

{[X1,Xi] I R E L}

(7)
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which is permissible since

-1 -1

[X1,X11 = E => [X1 ,X1] _ E => [X1,X1 ] = E

Theorem 2. If p is an odd prime, G,H c G
P

, and m(H) = 0 ,

then GZ HEGp

Proof. Noting that the hypotheses of the theorem are equivalent

to the conditions (4), we choose a subset L s H such that

L u L-1 = H\{e} (the disjoint union is possible since p is

odd), whence ILI = 2(n-1) . The presentation derived above

from (6) has the form

G 2 H = <Xl,Y I R1,S,{CX1,X1] IRE L}>

By hypothesis, we can write

G= <XIR> , H= <YIS>

where

IXI = d(G), IRI = d(G) +m(G), IYI = ISI = d(H)

and we have a presentation for G2 H on d(G) +d(H) generators,

and

d(G) + m(G) + d(H) + R,.d(G)2

relations. Since f =
n21

, this presentation achieves the

values given in (5), proving that G ?H E G
P

, as required.

Theorem 3. if p is an odd prime, then the Sylow p-subgroups

of all finite symmetric groups belong to G
P

, and the subgroup

closure of Cp contains all finite p-groups.
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Proof. Since Z
P

E G
P

and has trivial multiplicator, a simple

induction using Theorem 2 shows that all its wreath powers W
n

are also in Gp . That Gp contains the Sylow p-subgroups of

symmetric groups now follows from Theorem 1 and Example 4. The

second assertion now follows using the theorems of Cayley and

Sylow.

EXERCISE 1. Prove that the minimal number r'(G) of relations

needed to define a finite p-group G is achieved in a presen-

tation on d(G) generators.

EXERCISE 2. Let G be a finite p-group and H a finite q-group,

where p and q are primes. Prove that d(G xH) = d(G) + d(H)

if and only if p = q .

EXERCISE 3. Deduce formula (2) from the following theorem of

Schur: for any finite groups G,H ,

M(G x H) M(G) x M(H) x (G ®H)

where the tensor product is an abelian group defined as follows.

For cyclic groups we have

ZQ ® Zm = Z(f m)

For finite abelian groups, we use the Basis Theorem (§6) and the

universal properties

GOH = HOG , G®(HxK) = (G®H) x (G®K) .

Finally, all finite groups are covered by defining

G0H=Cab0Hab

EXERCISE 4. Prove that the base group of Z
P

2 H and kH are

isomorphic as kH-modules, where k = GF(p) and p is a prime.
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EXERCISE 5. Write down economical presentations for Z32 Z2

and Z2 t Z3 .

EXERCISE 6. Prove that Z
P

2 Z
P

is isomorphic to a Sylow p-

subgroup of S 2 , and find an economical presentation for it.
P

EXERCISE 7. Prove that the nth wreath power Wn of Z
p

is a

Sylow p-subgroup of S n , for all n c N
p

EXERCISE 8. Prove that any n E N can be written uniquely in

the form

0
n = L'

a . p i ,

i=k
0 <_ ai 5 P-1 ,

where i runs from 0 to the integer k = max{j p3 < n}

By a suitable partitioning of the set {1,...,n} , deduce that

the Sylow p-subgroups of Sn are isomorphic to

k xa.
i

x W.

i=0 1

a direct product of direct powers of the W. .

EXERCISE 9. If G and H are finite p-groups, prove that

d(G 2 H) = d(G) + d(H) .
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7 Small cancellation groups

The Moving Finger writes; and, having writ,

Moves on: nor all thy Piety nor Wit

Shall lure it back to cancel half a Line,

Nor all thy Tears wash out a Word of it.

(Fitzgerald: The Ruba`iyat of Omar Khayyam)

Given a group G = <XIR> , suppose that the relators in R are

all cyclically reduced and that R is symmetrized, that is, if r

belongs to R , then so do all cyclic conjugates of r and r-1

Then G satisfies a small cancellation hypothesis if the amount

of cancelling in forming any product rs (r,s E R, r x s-1 in

F(X)) is limited in one of various senses to be made precise in

§24. The formulation of these hypotheses is inspired by the

properties of the planar diagrams studied in §23. The latter

boast a degree of intrinsic usefulness, and may be thought of as

portions of the Cayley diagram of G adapted to fit inside R2

The power of the hypotheses derives from Euler's formula for

planar graphs, which explains the innocent but pervasive topo-

logical overtones encountered in this branch of combinatorial

group theory.

The conclusions that may be inferred from small cancellation

hypotheses form an interrelated hierarchy of properties such as:

(i) G is infinite,

(ii) the torsion elements in G can be classified,

(iii) G is SQ-universal,"that is, any countable group can be

embedded in some factor group of G ,

(iv) G contains a non-cyclic free subgroup, and

(v) G has soluble word problem, that is, there is an algorithm

for deciding whether or not any given word in F(X) belongs

to R

We content ourselves with just two applications: a theorem of
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D.J. Collins of type (iv) in §25 and a result of type (i) on

Fibonacci groups in §26 where the weakness of the conclusion may

be put down to the fact that the F(r,n) don't quite satisfy the

relevant small cancellation hypotheses.

§23. van Kampen diagrams

We shall be concerned here with finite, connected, planar

graphs, whose edges are oriented and labelled by the generators

of a group G = <XIR> . Note that both loops and multiple edges

are allowed, and that faces are simply connected, (by the Jordan

Curve theorem). As in the case of the Cayley diagram of G , we

can assign to any path in such a graph F a word in X , and

hence an element of G , in an obvious way. If the word thus

assigned to the boundary of every face of F (for some initial

vertex and some orientation) is a member of R , then r is

called a van Kampen diagram for G = <XIR> . A modicum of in-

tuition suffices to show that the boundary label associated with

any such diagram is a product of conjugates of members of R ,

and is thus equal in G to e . van Kampen diagrams thus provide

a useful means of illustrating the deduction of new relations from

old, as the following examples show.

Example 1. The diagram of Fig.l illustrates the fact that the

relation x4 = e holds in the quaternion group

<x,y I xYx = Y, yxy = x>

x

x

x

Fig.l
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Example 2 (R. Knott). Consider the (by now familiar) group

G = <x.y I x2yxy3. y2xyx3>

The non-obvious fact that x7 = e in G is embodied in the

following diagram.

Fig.2

Now let G = <XIR> be a presentation in which R is a

symmetrized set of cyclically reduced words. This is a standard

assumption in small cancellation theory, and any presentation can

be augmented to satisfy it in an obvious way without affecting

the isomorphism class of the group presented. As pointed out

above, the boundary label of any van Kampen diagram for <XIR>

is a word equal to e in G , and the converse of this assertion

forms the starting point of the theory. Thus, if w e F(X) is a

word equal to e in G , we can find rl,...,rn E R and

u1,.... un E F(X) such that

w = u1 r1uf.u2 r2u2. ... . un r
n
u
n . (1)

and the corresponding van Kampen diagram is just a collection of

balloons on strings meeting at a point 0 , as in the diagram r
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0

Fig.3

of Fig.3. For each i , 1 5 i <_ n , 0i is the initial point

for the face with boundary label ri , 0 is the initial point

for the boundary of r , and the orientation is clockwise in all

cases. We thus have a van Kampen diagram for G with boundary

label equal to w in F(X) .

Now while the boundary label of each face of r is reduced,

the same is not true for the boundary label of F , and we must

now modify the diagram to remove this unpleasantness. To this

end, assume that the boundary of r contains consecutive edges

E1 (from P1 to PO ) and E2 (from P
0

to P2 ), bearing

labels x and x-1 , respectively, for some x c
X±1

. If P1

x x
1 4

P1 E1 P
0

E2 P2

Fig.4

is distinct from both P
0

and P2 , we can deform that part of

r lying in a small neighbourhood of E1 and, keeping P
0

fixed,

we can pivot E1 about P
0

in the exterior of r until it comes

into coincidence with E2 . Then P1 and P2 will coincide, as

will the oriented edges E1 and E2 , and we have decreased the

length of the boundary of r . If P2 is distinct from both P
0

and P1 , we proceed in a similar manner, and this leaves us with

the case when P1 = P2 . When this occurs, the segment E
I
E
2

is

a loop attached to the boundary of r at the single point P1 ,
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and the procedure here is simply to delete this loop, together

with that part of r in its interior. After a finite number of

such operations, the label on the boundary (still equal to w in

F(X)) will be reduced.

We call a van Kampen diagram reduced if its boundary label

(for some starting point) is a reduced word in F(X) and, in

addition, it contains no non-trivial circuit whose label is equal

to e in F(X) . Thus, for example we wish to exclude such ca-

lamities as that illustrated in Fig.5, where xs e R is in reduced

form. Such contingencies can be obliterated simply by shrinking

s s

Fig.5

the interior of the offending circuit to a slit, so that the two

faces in Fig.5 are replaced by a simple path from PI to P
0

labelled s . We thus perform a sequence of operations of the

type described in the preceding paragraph, operating in the in-

terior of the offending circuit rather than the exterior of r

Thus, only interior edges of r are erased, and the boundary of

F is unaffected by this procedure. We condense these deliber-

ations into the following fundamental theorem.

Theorem 1. If G = <XIR> is a presentation in which R is a

symmetrized set of cyclically reduced words and w is any reduced

word in R , then there is a reduced van Kampen diagram for C

with boundary label w .

EXERCISE 1. Convince yourself that the boundary label of any van

Kampen diagram for G = <XIR> is equal in G to the identity.
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EXERCISE 2. Let G = <XIR> and suppose that a,b,c,d E X and

[a,c],[a,d],[b,c],[b,d] E R . Draw the van Kampen diagram for the

relator [ab,cd] .

EXERCISE 3. In the Fibonacci group

F(2,4) = <a,b,c,d lab = c , be = d , cd = a , da = b>

the relations a =
b-3

, b5 = e hold; draw the associated van

Kampen diagrams.

EXERCISE 4. Draw a van Kampen diagram to show that the group

<a,b I abab2,baba2>

is abelian.

EXERCISE 5. Given that

G = <x,y Ix2y = y2 x, x8 = e> I

show by means of a van Kampen diagram that y8 = e in G

EXERCISE 6. Draw a van Kampen diagram to show that, in the

group

3 2 3 -1 2
<x, y I x = y , x = e, y xy = x > ,

the relation x3 = e is superfluous.

EXERCISE 7. Convince yourself that any non-trivial circuit

whose boundary label is e in F(X) can be eliminated from

a van Kampen diagram. (Use induction on the number of faces

enclosed by the circuit.)
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EXERCISE 8. If 0 is the Cayley diagram of G = <XIR> and r

is a van Kampen diagram for G , prove that there is an incidence

preserving homomorphism of graphs from r to A

§24. From Euler's formula to Dehn's algorithm

Having acknowledged the interface between group presentations

and planar graphs, we proceed to establish some fundamental proper-

ties of the latter from which we can deduce significant information

about the former. Thus we put group theory aside for the moment

and concentrate on maps, that is, finite, connected, planar graphs,

assumed to have more than one vertex to avoid triviality. Though

such a restriction is not necessary at this stage, it is suf-

ficient, from the point of view of applications to van Kampen

diagrams, to consider only maps M such that the boundary D'

of any face D of M is a simple closed curve.

The degree d(D) of a face D of M is the number of edges

in its boundary, counted according to multiplicity, and similarly,

the degree d(P) of a vertex P of M is the number of edges

incident with P . The boundary M' of M is the topological

boundary of the unbounded component of R2\M . A boundary vertex

or edge is one contained in M' , and a boundary face is one whose

boundary contains a boundary edge; other vertices, edges and faces

are called interior.

Our hypotheses on M are roughly to the effect that both the

average degree of a face and the average degree of an interior

vertex are fairly large, that is, at least as big as the corre-

sponding quantities in one of the three regular tesselations of

the plane (cf. §14). Our main conclusions are combinatorial ana-

logues of two elementary metric properties of a sufficiently

regular domain M in R2 . The first of these asserts that the

integral of curvature along M' is a constant (2ii) , and the

second bounds the area of M by the square of the length of M'

times a constant (1/47) .

218



In order to formulate the fundamental result, we shall need

three functions of a real parameter t . First is the curvature

function, defined by

K(t) = X* (t-d(P)) ,

where the summation ranges over all boundary vertices P . Next,

let

V(t) = 7' (d(P)-t) ,

where the summation ranges over all interior vertices, and

finally, put

R(t) = ' (d (D) -t) ,

the sum running over all faces D of M

Theorem 1. If M is any map, and p,q are positive real

numbers such that 1/p + 1/q = 1/2 , then

1) ? p + V(p) + Q R(q)

Proof. Let v,e,f be the numbers of vertices, edges and faces,

respectively, of M , and consider the following three equations:

(1)

(2)

(3)

The first of these is Euler's formula, the second is obvious, and
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in the third, e- is the number of edges on M' . Since the

latter are counted according to multiplicity (edges not on the

boundary of any face being counted twice), it follows that

e_ ? v, , the number of boundary vertices.

Letting x be a positive real number, we eliminate e by

multiplying equations (1),(2),(3) by 2(x+l),l,x respectively,

and adding:

2(x+l) + I d(P) + x y d(D) + xe_ = 2(x+l)v + 2(x+l)f .

Incorporating the terms on the right-hand side into the sums on

the left, we obtain

2(x+l) + (d(P) - 2(x+l)) + x I (d(D) - 2(x+l)) + xe = 0
x

Now the positive real solutions of 1/p + 1/q = 1/2 are given

parametrically by

p = 2(x+l) , q = 2(x+l)/x , 0 < x E R

and with these substitutions, we have:

p + V(p) + (d (P) - p) + P R(q) + P e. = 0
q q

that is,

p + V(p) +
q
11 R(q) = G (P-d(P)) - 9 e

(P-d(P)) - q v- 9

since p/q ? 0 and d- ? v- . Now the right-hand side of this

inequality is equal to

(p - Q - d(P) ) = K(p - q) = K(2 + 1)

since p/2 = 1 + p/q . This completes the proof.
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We now turn our hand to the task of deriving some consequences

of this result that will later be used to prove group-theoretical

theorems. Of the three results stated below, the first follows

at once from the fundamental theorem, while the second follows at

once from the first, and forms the cornerstone of the next two

sections. The third (Theorem 4) also relies on Theorem 2 (this

time we supply a proof), and will be used later in this section

to solve the word problem for small cancellation groups. At each

stage in this progression, something is being thrown away, so

that hypotheses can be weakened and conclusions strengthened as

indicated, for example, in Exercises 1 and 2.

Theorem 2. Let (p,q) = (6,3), (4,4) or (3,6) , and let M be

a map such that d(D) ? q for each face D and d(P) ? p for

each interior vertex P . Then K(p/2 + 1) ? p , that is

J°(4-d(P)) ? 6 , j°(3-d(P)) ? 4 , or r0(2- d(P)) >_ 3

respectively, according to case.

Theorem 3. if (p,q) and M satisfy the conditions of the

previous theorem, then M has at least two boundary vertices of

degree < 3, <_ 2, or _< 2 , respectively, according to case.

Theorem 4. Let (p,q) and M satisfy the conditions of the

previous theorem and define a(M) to be the number of vertices

of M and b(M) = K(p) . Then

a(M) <_ J b(M) 2

where J = min(p2,2p(p-2)) , that is, 36,16,6 respectively,

according to case.

Proof. We begin with a metamathematical remark. The proof will

be by induction on a(M) , and the inductive step is carried out

by passing from M to its double-dual M1 = M** , that is, M1
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is obtained from M by deleting all the vertices on M' together

with their incident edges. This lands us squarely in the soup,

for the simple reason that M1 may not be a map; for one thing,

it may not be connected, and for another, even its connected com-

ponents may not be maps. For this reason, we shall prove the

theorem for plans, that is, finite planar graphs whose connected

components are either maps or trivial (that is, have one vertex

and no edges). Since every map is a plan, the theorem will follow

a fortiori. Needless to say, our plans will satisfy the (p,q)-

conditions of Theorem 2, so that M contains no loops or multiple

edges, and any vertex of degree two or less must lie on M' .

The base of our induction thus comes gratis, since the trivial

graph has a = 1 and b = p .

Now let M be a plan with a(M) ? 2 , and distinguish two

cases. First suppose that M has a boundary vertex of degree

less than 2 , and let M0 denote the plan obtained by deleting

this vertex along with its incident edge (if it has one). Thus

we see that a0 = a(M0) = a-l , and b0 = b(M0) is either

b- p+ 2 or b -p . Since b0 ? J and p ? 3 , it follows that
b0 ? p22 (see Exercise 3), and, using the inductive hypothesis,

we have:

b2 ? (b0 +p-2) 2 = b0 + (p-2) (2b0 + p - 2)

'- Ja0 + (p-2)(2p) ? Ja0 + J = Ja

as required.

We now turn to the second case, where every boundary vertex

of M has degree at least 2 ; it follows that every such vertex

is incident with at least two boundary edges. If we let a'

denote the number of vertices on M' , and write d' = 'd(P)

we have

b = b(M) = K(p) _ 1'(p-d(P)) = pa' - d'

Now Theorem 2 asserts that
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p <_ K(2+1) _ J'(2+1-d(P)) = a'(2+1) - d

and, eliminating d' from (4) and (5), we obtain:

b ? p22 a' + p

Letting M1 denote the double dual of M as defined above, we

can write

d' = f1 + 2f2 ,

(5)

(6)

(7)

where f.
i

denotes the number of deleted edges with i endpoints

on M' (i = 1,2) . Furthermore, by the case hypothesis, we also

have d' ? 2a' + fl , whence

a' <_ f2 . (8)

We proceed to estimate b1 = b(M1) _ (p-dl(P)) , where the

summation ranges over all vertices P on M1 , and dI(P) is the

degree of P in M1 . If P is a vertex in M1 , it cannot be

on M' , and so d(P) p , and if P lies on M1 , we have

d1(P) = d(P) - f(P) , where f(P) denotes the number deleted

edges incident with P . Since each deleted edge with just one

endpoint on M' has its other endpoint on M1 , we see that

f(P) = f1 Combining these facts, we have:

bl = 1(p-d1(P)) <_ 11(d(P)-d1(P)) _ if(P) = f1

and using (4), we find that

b - bl ? pa' - d' - f1 .

Applying (7), (8) and (5) in turn, we have:

b - b1 >- pa' - 2d' + 2f2 ? (p+2)a' - 2d' ? 2p
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that is,

bI <-b-2p .

Plugging in the inductive hypothesis that Ja1

if M1 is empty), we have

Ja = J(a' + al) 2p(p -2)a* + b2

(9)

s bi
2

(valid even

Finally, estimating a' and b1 using (6) and (9) respectively,

we have

Ja <_ 4p (b - p) + (b - 2p) 2 = b2

and the proof of Theorem 4 is complete.

Example 1. We shall prove that the von Dyck group

G = D(k,m,n) = <x,y I xk,ym,(xy)n> , k >- m >_ n > 2

is infinite whenever m ? 4 . Though we have already proved this

in Chapter V, the method used here provides a simple and typical

application of Theorem 3 above. Note that the definitive result

(G infinite if and only if 1/k + 1/m + 1/n <_ 1) is not obtained,

and unfortunately this is also typical.

Assuming for a contradiction that G is finite, we know that

xy-1 has finite order, so there is a k c N such that (xy-1)k

is the identity in G . It follows from Theorem 23.1 (and

Exercise 4) that there is a reduced van Kampen diagram r with

boundary label (xy-1 )k . Since (xy-1 )k is cyclically reduced,

the boundary of r contains no vertices of degree 1 . Since

each of xk,ym,(xy)n is cyclically reduced, r has no interior

vertices of degree 1 . Further, one readily observes that,

because the three relators are all positive words, r has no

interior vertices of odd degree (especially 3). Finally, suppose

F has an interior vertex P of degree 2 . Then P must lie
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Fig.l

on the boundary of exactly two faces, F1 and F2 say, of F . If

F1 and F2 abut along the segment OPQ , as in Fig.l, the

boundary labels of F1 and F2 , reading from 0 - P - Q } 0 are

freely equal to cyclic conjugates of the defining relators or

their inverses, and have a segment of length two (corresponding to

the two edges incident at P ) in common. Inspection reveals that

these two words must in fact be identical, whence the boundary

label of F1 u F2 is freely equal to e , contradicting the fact

that r is reduced.

The burden of the previous paragraph is that all the interior

vertices of r have degree at least 4 ; that every face has

degree at least 4 is assured by the condition m ? 4 . Thus the

hypotheses of Theorem 3 are fulfilled with (p,q) _ (4,4) , and we

deduce that r has a boundary vertex of degree 2 Letting E1 and

E2 be the edges incident at this vertex, the orientations on E1

and E2 must be opposite, since the edge-orientations alternate

around the boundary. Further, E1 and E2 must lie on the boundary

of a face or else they are traversed twice in opposite directions

in circumnavigating r , and (xy-I)k would have to contain x-1

as a letter as well as x. The final contradiction now ensues,

since consecutive edges on any face must have like orientation.

The next job is to translate the threefold hypotheses of

Theorems 2, 3 and 4 into statements about a given presentation

G = <XIR> . We assume that R is a symmetrized set of cyclically

reduced words (see §23), so that a typical reduced van Kampen

diagram r for G can have no interior vertex of degree 1 . We

deal comprehensively with any interior vertex P of degree 2 by

simply deleting it, so that the situation depicted in Fig.1 is
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Fig. 2

transfigured into that illustrated in Fig.2. Now since r is

reduced the boundary label of F
1

u F2 cannot be freely reducible

to e , whence the label on OQ must be an initial segment of two

distinct members of R .

Definition. Let G = <XIR> , where R is a symmetrized set of

cyclically reduced words. A reduced word w is called a piece

(with respect to G ) if it is an initial segment of two distinct

members of R .

It follows that every interior edge of the modified diagram

has a piece as its label, and this leads u's to formulate the fol-

lowing condition, depending on an integer k ? 3 .

C(k) : G = <XIR> satisfies C(k) if no member of R is a

product of fewer than k pieces.

It follows that if r is a diagram for a C(k)-group, then

every face of r has degree at least k , provided only that

every generator is a piece. The last condition is to avoid

trouble on the boundary of r ; the situation where a member of

X is not a piece is somewhat pathological, and can usually be

handled by other methods, as in §25, for example. The conclusions

of Theorems 2, 3 and 4 thus apply to C(6)-groups (the case

(p,q) = (3,6)) whose generators are all pieces.

Passing on to the case (p,q) = (4,4) , we wish to preclude

interior vertices of degree 3 , as illustrated in Fig.3.

Letting the boundary labels of Fl,F2,F3 (proceeding clockwise

from J ) be wl,w2,w3 , notice that free cancellation occurs in

forming each of the products w1w2, w2w3 and w3wl , while no
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Fig.3

two of wl,w2,w3 can be inverse in F(X) . We thus make the

following definition for each integer k ? 4 .

T(k) : G = <XIR> satisfies T(k) if for any integer k with

3 < Q < k , and any elements rl,...,r2 E R such that

-1rl x rR, ri x ri+1
there is no free cancellation in forming at least one of the

products r1r2,r2r3,...,r9-1r9,r9r1 .

It is now clear that the conclusions of Theorems 2, 3 and 4

also apply to diagrams of groups satisfying C(4) and T(4) (as

in Example 1), or C(3) and T(6) , the condition that each gen-

erator is a piece being taken for granted. Of the three small

cancellation conditions

C(6) , C(4) and T(4) , C(3) and T(6) ,

we have already had an application of the second, and another is

the topic of the next section. The last is seldom encountered,

as it is often hardest to check, and the conclusion (cf. Theorem 3

above) is often weaker than in the other two cases. So out of

perversity, we give a rare glimpse of this case in §26. We con-

clude this section by solving the word problem for any finitely-

presented group satisfying any of the three small cancellation

conditions.
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Given a group G = <XIR> , the word problem for C is soluble

if we can decide in a bounded finite number of steps whether any

word w E F(X) is equal in G to the identity.

Theorem 5. Let G = <XIR> be a finite presentation satisfying

any of the three small cancellation conditions

C(6) , C(4) and T(4) , or C(3) and T(6) .

Then G has soluble word problem.

Proof. Let w E F(X) be a reduced word equal to e in G

and let r be any reduced van Kampen diagram for G with

boundary label w and underlying map M . We claim that the

number a = a(M) of vertices of M is bounded in terms of

k = k(w) . If e_,v_ denote the number of boundary edges,

boundary vertices of M respectively, we have v- <_ e_ , as in

the proof of Theorem 1. Furthermore, it is plain that e <_ k

and we see that

b(M) = K(p) _ r (p-d(P))

<-Ippv_spe_spk

It now follows from Theorem 4 that

where p2/J = 1,1, 2 according to case. This establishes the

above claim.

Now let w E F(X) be any reduced word, with k = k(w) . Now
2

there are only finitely many maps with s
p

k2 vertices, and

each of these has only finitely many edges to be labelled by

generators or pieces from G . Since X and R are finite,

there are only finitely many possible labellings. Now w = e

in G if and only if it is the boundary label of one of the
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resulting finitely many van Kampen diagrams. We thus have an

algorithm for solving the word problem for G .

EXERCISE 1. Prove that the conclusions of Theorems 2, 3, 4

remain valid under the weaker hypotheses that the faces of M

have degree at least q and the interior vertices have degree

at least p on the average, in each of the three cases.

EXERCISE 2. Let M be the map underlying a reduced van Kampen

diagram whose boundary is a simple closed curve. Prove that

the inequality in Theorem 1 becomes an equation. Further deduce

that, under the conditions of Theorem 3, the number of boundary

vertices of degree s3, 52 or 52 is at least 3, 4 or 6,

respectively, according to case.

EXERCISE 3. Let p and b0 be natural numbers such that

p > 3 , and b2 > min(p2,2p(p-2))

Prove that b0 > (p+2)/2 .

EXERCISE 4. Write down the symmetrized set of 8 relators

obtained from the presentation of the von Dyck group in Example 1.

Check that they are cyclically reduced and that the pieces are

precisely
x±l,y±1

EXERCISE 5. Investigate the role of a generator x in

G = <XIR> that is unlucky enough not to be a piece. Specifi-

cally, show that if it occurs in any r E R , then r is

cyclically conjugate to (xw) , where k is a non-zero integer

and w is a word in X\{x} .

EXERCISE 6. Note that the word problem for free groups is

trivially soluble.
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§25. The existence of non-cyclic free subgroups

The method described in the previous section can be exploited

to yield more significant information about a group G = <XIR>

satisfying small cancellation axioms than that a certain element

of G has infinite order. Thus, for example, the torsion el-

ements of C(8)-groups can be completely classified. Also, under

suitable conditions, we can deduce that G has the property in-

dicated by the title of this section, or that G is SQ-universal.

The theorem we shall prove has as a kind of prototype the cele-

brated Freiheitssatz of W. Magnus: if G = <Xlr> is a one-

relator group, there is an x E X such that the subgroup of G

generated by X\{x} is free on this set.

Though this theorem can be proved using the methods of small

cancellation theory, we choose instead the following result of

D.J. Collins: if G = <XIR> is a group satisfying C(4) and

T(4) and IXI > 3 , then G has a free subgroup of rank 2. It

then follows from the Nielsen-Schreier theorem that G has a

free subgroup of any given finite rank. In fact, Collins also

covers the 2-generator case, where either the desired conclusion

holds, or C is one of the groups in a specified finite list.

The main body of the proof deals with the case where each gener-

ator is a piece, and we embark on this now, consigning the bulk

of the opposite case to the exercises.

We assume from now on that G = <XIR> satisfies C(4) and

T(4) , with IXI ? 3 and R a symmetrized set of cyclically

reduced relators, and that every member of X is a piece. The

force of the small cancellation condition is embodied in the

first of two lemmas.

Lemma 1. Let w E F(X) be a non-empty reduced word equal to

e in G . Then w has a subword of length at least two in

common with some member of R .

Proof. Let r be a reduced van Kampen diagram for w with

underlying map M . We doctor M by deleting any vertex of

degree 2 on M that is not on the boundary of a face, re-
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placing its two incident edges by a single edge. Our hypotheses

ensure that the resulting map still satisfies the conditions of

Theorem 24.3, and since M' contains at most one vertex of

degree one, we deduce the existence of a boundary vertex of

degree two in M that is also on the boundary of a face. The

labels in F on the two edges incident with this vertex combine

to give the desired common subword.

For the second lemma, we need the ad hoc notion of a cancel-

lation triple, that is, an ordered triple (xy-1,yz-1,zx-1) of

reduced two-letter words in F(X), x,y,z E X

Lemma 2. The components of a cancellation triple cannot all

be subwords of members of R .

Proof. Suppose for a contradiction that (xy-1,yz-l,zx-1) is

a cancellation triple, and that the words

ulxy vi , u2yz v2 , u3zx v3

are in reduced form and belong to R . Since R is symmetrized,

it also contains the words

-1 -1 -1
x v3u3z , z v2u2y , y vlulx

and these violate T(4) .

Turning to the proof of the theorem, the action takes place in

the complete graph on 6 vertices, to be though of as the

1-skeleton of an octahedron, together with the three diagonals.

Specifically, let A,B,C be the points in R3 whose Cartesian

coordinates are (1,0,0),(0,1,0),(0,0,1) respectively, and let

A',B',C' be their respective images under reflection in the

origin (see Fig.l). If.we fix three distinct generators

a,b,c e X then to each of the 30 oriented edges in this

figure, we can attach a reduced two-letter word in the following
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C

Fig.l

way. The label on an edge leaving (entering) A,B,C,A',B',C'

(ditto) has as its first (second) letter a-1,b-l,c-l,a,b,c
-1 -1 -1

(a,b,c,a ,b ,c ) respectively. Thus, if two edges are equal

but for orientation, their labels are inverse to one another. It

is also clear (Exercise 1) that the oriented triangles in this

figure are in one-to-one correspondence with the cancellation

triples involving a, b and c .

We now colour an edge green if its label is a subword of a

member of R , and red otherwise, whereupon Lemma 2 asserts that

there can be no green triangles. The argument now breaks up into

a number of cases, of which the first is typical and given in

full detail now.

1) Let all the edges of the square BCB'C' be red, together

with the diagonal CC' . This means that none of the words

-1 -l-l-12b c, c b , be , cb, c , or their inverses, (1)

occur in R (that is, none of them can be a subword of a member

of R ). We claim that the subgroup of G generated by

{bcb-1,c} is free on this set. The reduced form of a supposed

relator is a product of words of the form bcmb-l,cn, with

mn x 0 . The only possible two-letter subwords of this are thus

bc, c2, cb-1, b-lc, cb,

be-1,
c-2, c-lb-1, b-lc-l c-lb,
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and these are precisely the members of the list (1). Thus, no

subword of the alleged relator occurs in R , contradicting

Lemma 1. It follows that in this case, <bcb-1,c> is free of

rank 2 , as required.

This case forms the first row of the following table, where

exactly the same type of argument leads from the red edges in the

first column to the free generators in the second (see Exercise 2).

red edges

1) BC,CB',B'C',C'B,CC'

2) AB,BC,CA,A'B',B'C',C'A'

3) A'A,AB,BA',B'C,B'C'

4) AC',C'B,BA,C'B',B'A,A'C

5) AB,AB',AC',A'C,CB',B'C',C'B

6) CC',AB,A'C,CB',B'C',C'B

7) CB',B'A,AC,CA',A'C',C'B

8) CB',B'C',C'B,AB,A'C,C'A,AA',BB'

9) CB',B'C',CC',AC,AC',BA'

Table 1

free generators

bcb-1,c

ab-lca-l,bc-1

b-1ab,cb-1abc-1

bacb-1,ac

c-la
lbcac,bacb-1

bcb-1 ,acbcb-1c_1a 1

c-1a_1cbac,bac-1
b-1

a-1 bca,acbc-1 a-1

bcb-1,a-lca

From the symmetry of the figure, we can clearly extend our list

of arrangements of red edges that yield a pair of free generators.

This is done using symmetries that are combinations of the follow-

ing two basic types.

a) Reflection in a central square: reflection in BCB'C'

interchanges A,A' and fixes the other points, whence the triple

(a,b,c) is replaced by (a-I, b,c)
.

b) Rotation through i/2 about a diagonal: such a rotation

about AA' fixes A,A' and maps B - C - B' - C' ' B , whereupon

(a,b,c) is replaced by (a,c-1,b) .

We shall use this symmetry (sometimes implicitly), together

with the crucial fact that there are no green triangles, to reduce

unknown cases to known cases. At each stage, we preclude the
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possibility of cases already dealt with, and so the resulting

stockpile of known cases accumulates as the number of those left

to consider diminishes. When the latter reaches zero, the proof

will be complete. We urge the reader to draw, and suitably colour

in, copies of Fig.l, especially in cases 1) -4) of Table 1. The

proof breaks up into 5 cases, according to the maximum number of

red edges on a central square, and we examine these in turn.

Case IV: there is a central square with four red edges.

By symmetry, there is no loss of generality in assuming that

BCB'C' has four red edges. By 1) and symmetry, both the diagonals

BB' and CC' must be green. Because of 2), at least one of the

eight edges from A or At to a vertex of BCB'C' must be

green; we can assume that B'A is green. Hence, AB is red and

using 3), either (i) AA' is green, or (ii) BA' is green.

If (i) occurs, B'A' must be red to avoid a green triangle.

By 2) and symmetry, either AC' or A'C is green. In either

case, both AC and A'C' are red, and we have an occurrence

of 2).
Now assume that (ii) occurs and that AA' is red (since (i)

has been dealt with). We again find that B'A' is red and

either AC' or A'C is green. In the former case, AC is red

and by 2), A'C' is green. It follows that A'C is red and we

have an occurrence of 3). When AC' is red and A'C is green,

the argument is virtually identical (interchange A and A'

and C and C' ).

Case III: there are no central red squares, but there is a

central square with three red edges.

Assume by symmetry that CB',B'C',C'B are red, and that BC

is green. Note that this is the toughest case; we shall invoke

rows 2) - 8) of Table 1. Since there are no green triangles,

either AB or AC is red. Combining two symmetries of types a)

and b) to send (a,b,c) to (a,c,b) , we can assume that AB is

red. It follows from 3) that either (i) BA' is green, or (ii)

AA' is green.

If (i) occurs, A'C must be red, and by 6), CC' is green.

Now by 5), either a) AC' is green or b) AB' is green. If a)
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occurs, AC is red and 3) then makes AA' green. Hence, A'C'

is red and 7) forces AB' to be green. It follows that B'A'

is red, and we have an occurrence of 4) (triangles B'A'C, B'A'C',

and edge AB ). Turning to b), we let AB' be green and AC'

red. Then B'A' is green by 2), and so both AA' and BB' are

red. We are now in case 8) of Table 1.

Passing on to case (ii), we can assume that AA' is green and

BA' red. Now 3) forces CC' to be green, and at least one of

C'A,C'A' is green by 4). Now by a symmetry of type a), we can

assume that C'A is green, whence AC and A'C' are red. By

2), AB' is green, so A'B' must be red, and we have an occur-

rence of 4) (triangles A'C'B',A'C'B , and edge AC ).

Case II: There are no central squares with three red edges,

but there is one with two red edges.

There are clearly two subcases, according as the red edges on

the central square are adjacent or not. We thus have (i) CB'

and B'C' red, or (ii) CB' and BC' red.

As usual we take (i) first, and assume that CB' and B'C'

are red, while BC and BC' are green. Now CC' must be red,

and by 3), either BA or BA' is green. We can assume by

symmetry that BA is green, so that AC and AC' are red.

Since we are in Case II, A'C and A'C' are both green, whence

A'B is red and we are in case 9) of Table 1.

Turning to (ii), we assume that CB' and BC' are red, while

BC and B'C' are green. As we are in Case II(ii), not both of

AB and AB' are red, and we can assume by symmetry that AB is

green. Hence, AC is red and, again since Case II(i) has been

dealt with, CA' and AC' are both green. So AB' and BA'

are red and since we are in Case II, A'B' is green. It follows

that A'C' is red, and we have an occurrence of 2).

Case I: No central square has two red edges, but there is a

central square with one red edge.

Suppose that BC is red and that CB', B'C' and C'B are

green. Since we are in Case I, either B'A or B'A' is green,

and we immediately obtain two red edges in ACA'C' . This contra-

diction shows that Case I cannot arise.
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Case 0: Every central square is green.

This forces all twelve non-diagonal edges in Fig.l to be

green, and so we obtain lots of green triangles, whence this case

also cannot arise.

Theorem 1. Let G = <XIR> be a presentation with IXJ ? 3 and

R a symmetrized set of cyclically reduced words. Suppose that

G satisfies C(4) and T(4) and that every generator is a piece.

Then G contains a non-cyclic free subgroup.

We close this section with a glance at the situation when not

all the generators of G = <XIR> are pieces. In view of Exer-

cise 24.5, such generators are of exactly one of the three types

covered by the following ad hoc definition.

Definition. A generator is called singular if it is not a piece.

A singular generator which does not occur in R is called essen-

tial. A singular generator x that appears only in the cyclic

conjugates of

(xw)k , k e N , w a word in X\{x} ,

is called removable if k = 1 and a pole of order k -1 if

k > 1 .

Theorem 2. Let G = <XIR> be a finite presentation of a group

needing at least three generators. Assume that R is a sym-

metrized set of cyclically reduced words such that C(4) and

T(4) hold. Then G contains a non-cyclic free subgroup.

Proof. Our first step is to use Tietze transformations to

remove all the removable generators, noting that this must be

done seriatim, since the removal of one generator can affect

the status of the others. The result is a presentation such that:

a) there are no removable generators (by construction),

b) at least three generators are needed (it is still G ),
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c) C(4) and T(4) still hold (Exercise 3).

If this presentation (still called <XIR> for convenience) has no

singular generators, the result follows from Theorem 1. If <XIR>

has an essential generator, we have that G = H* Z , where H is

non-cyclic and Z is infinite cyclic. By Exercise 4, G has a

subgroup K of the form Z *Z or Zk *Z (k c N, k ? 2), and

K has a factor group Zk *Z
3

, which has a non-cyclic free sub-

group by Exercise 12.5. The conclusion for G now follows from

Exercise 5. A similar argument for poles shows that G has a

subfactor isomorphic to either

(Z2 x Z2) * Z2 or Zk * ZQ ,

where the former is needed to deal with simple poles, and in the

latter, k and k are integers ? 2 but not both equal to 2

The result now follows from Exercises 5, 12.5 and 12.6.

EXERCISE 1. Prove that every reduced two-letter word in the

distinct generators a,b,c and their inverses occurs as the

label of exactly one edge of Fig.l. By counting cancellation

triples and oriented triangles, show that these sets are in one-

to-one correspondence.

EXERCISE 2. Check that in each row of Table 1, the assumption

about red edges in the first column yields the free generators in

the second column.

EXERCISE 3. Let G = <XIR> and let <X'IR'> be the result of

removing a generator and the corresponding relator (together with

its cyclic conjugates and their inverses) by a Tietze transform-

ation. Prove that if <XIR> satisfies C(k) or T(k) , then so

does <X'IR'> .

EXERCISE 4. Show that every non-cyclic group has a subgroup iso-

morphic to either Z,Zk (k >- 3) or Z
2 x Z2
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EXERCISE 5 (see Exercise 1.5). Let J denote the property of

possessing a non-cyclic free subgroup. Prove that if H < K 5 G

and K/H has property J , then so does C .

EXERCISE 6. Check that, in the case when G has a pole, the

details of the proof of Theorem 2 carry through as stated.

§26. Some infinite Fibonacci groups

We return to the groups F(r,n) = <XIR> , with

X = {x1,...,xn} , R = {xi+l ... xi+rxi+r+1
I 1 <_ i s n}

where subscripts in the relators are reduced modulo n (see

§9). The burning question is whether, for fixed r ? 2 and in-

creasing n E N , the F(r,n) eventually become infinite. We

have already shown that though the F(r,n) ab are eventually

strictly increasing in size, they are always finite. When r = 2,

the only undecided case is when n = 9 , and the bulk of the work

for these groups was carried out by R.C. Lyndon, who used small

cancellation theoretic methods to prove that F(2,n) is infinite

for n ? 11
We complement his result in this section by showing that

F(r,n) is infinite whenever r > 2 and n > 5r . In fact, we

obtain the desired result for a slightly larger set of pairs

(r,n) than this, and it turns out that the corresponding groups

all have soluble word problem. The method provides a rather rare

example in the use of conditions C(3) and T(6) , and the over-

all plan is to discover when F(r,n) satisfies these conditions.

The answer turns out to be never (due to the occurrence of the

singular vertices described below), and the van Kampen diagrams

have to be doctored in order to obtain the desired result. Note

that the method breaks down completely when r = 2 , whence our

result is disjoint from Lyndon's and is, in fact, an order of

magnitude easier to prove.

Our aim is to apply Theorem 24.3 to the map M underlying an
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arbitrary reduced van Kampen diagram P for G = F(r,n) , so we

seek conditions on (r,n) which guarantee that the hypotheses

hold in an amended version of M . As usual, we ignore interior

vertices of degree 2 , and so the investigation begins with the

quest for pieces. Ignoring the trivial case n = 1 (F(r,l) ° Zr-1)

we see that every generator is a piece. It is also clear that the

xi+l ... xi+r-1 , 1 <_ i <_ n , subscripts mod n ,

and their subwords are all pieces, and a little thought shows

that these and their inverses are the only ones, except when

n = 2r (a case to be excluded later anyway). Another way of

putting this is to observe that, for 1 x n x 2r and 1 <- i <_ n

any of the three words

-1 -1
xi+l ... xi+r

' xi+rxi+r+l ' xi+r+lxi+l
(1)

determines any face of which it forms part of the boundary. Since

F is reduced, it follows that no two faces can abut along a path

whose label contains any of these words. We deduce that M

satisfies condition C(3) .

Turning to the less straightforward problem of ensuring con-

dition T(6) , we attempt to exclude interior vertices of degree

3, 4 or 5 . To this end, we define the type of an interior vertex

P to be the sequence of subscripts of the first letters of the

labels on the edges incident at P . We take each in turn, moving

clockwise from a fixed starting point, and indicate that an edge-

label is directed towards P by a vinculum. Now an adjacent pair

of coordinates in such a (cyclically-ordered) d(P)-tuple can only

be of one of the following 6 types:

(2)

Note that by transposing (reflecting about the angle bisector) and
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then translating, these 6 types correspond in pairs, as indicated

by their arrangement in the list (2). An interior vertex P is

called reduced if, nowhere in its type, does there occur a corres-

ponding pair in adjacent positions. Otherwise, P is called

singular, so that the type of a singular vertex contains a triple

of the form (1 <_ i <_ n)

(i,i-r,i) , (i,i+l,i) , or (1,1-1,i)

We concentrate first on the reduced vertices. By examining

the rules (2) for succession of edges, we see (Exercise 2) that

for a vertex to have degree 3 , n must be a divisor of one of

1, 3, r, 3r .

Similarly, for degree 4
I n divides one of

(3)

2, 4, r-1, r+l, 2r, 4r, (4)

and for degree 5
I

n must divide one of

1, 3, 5, r-2, r, r+2, 2r-1, 2r+1, 3r, 5r. (5)

Note the presence of the number r-2 in (5); it is precisely for

this reason that our method fails for the F(2,n) .

Passing to singular vertices, note that there can be none of

degree 3 , since the boundary labels of faces are reduced. Fur-

ther, if there were a singular vertex of degree 5 , we could (by

identifying the two equal edges and omitting the edge separating

them) arrive at the possibility of a vertex of degree 3 , and

these have already been dealt with.

There remains the possibility of a singular vertex of degree

4 ; these can actually occur (when r ? 3 ), but must have the

type (i,i+l,i,i+l) . Our strategy is now to add extra edges
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(and possibly interior vertices) to M in such a way that each

such vertex acquires at least 2 new incident edges. Let D be

a face whose boundary contains at least one singular vertex.

Specifically, let there be a singular vertices on the boundary

of D , and put d(D) = a +b . Then a ? 1 , and the type of a

singular vertex forces b ? 2 (cf. (1)). If a +b ? 6 , merely

introduce a new vertex into the interior of D , and join it by

an edge to each vertex on the boundary.

If a +b < 6 , we have the possibilities

(a,b) _ (1,2),(2,2),(3,2),(1,3),(1,4),(2,3),

corresponding to faces of the types shown in Fig.l. In this

diagram, solid dots denote singular vertices, and there are two

cases when (a,b) = (2,3) . The inclusion of the dotted edges

ensures that each singular vertex has its degree increased by

Fig.l

one in each of the last four cases, and similarly for all singular

vertices but A in the first three. The type of a singular ver-

tex ensures that the orientation is as shown, and it remains to

prove that a singular vertex can be of type A on the boundary of

at most two of the four faces that touch it.

If this were not so, such a vertex A would lie on the bound-

ary of two faces, DI and D2 say, abutting along an edge of
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type BA . Now the label of this edge is of the form xi+1.
*xi+R

(where 1 i <_ n, 1 <_ R, < r ), and so the boundary label of both

D1 and D2 (starting at B and moving to A as the next vertex)

is thus xi+1 ...xi+rx.' .

This shows that the label on the

boundary of D1 u D2 is freely reducible to e , and this contra-

dicts the assumption that F is reduced. This proves that the

above construction adds at least two new edges to each singular

vertex, and we conclude that T(6) is fulfilled in the modified

map M' , provided n does not divide any of the numbers in (3),

(4) or (5).
It now follows from Theorem 24.3 that M' has a boundary ver-

tex P of degree at most 3 . Since M' was obtained from M

by adding edges (and interior vertices), the same is true for M

and thus for r . We shall later choose a positive word for the

boundary label of r , and this will force M' to be a simple

closed curve. It follows that each boundary edge of M will be

on the boundary of a face.

It remains to interpret the conclusion of Theorem 24.3, that

is, to list the possible labels on the two boundary edges of r

incident at P . Using the rules of succession (2), one readily

checks (Exercise 4) that under the hypothesis of like orientation,

these labels must be xi followed by xj , where j is equal to

one of

i+l, i, i+2, i+r+l, i-r+l, (6)

the first being the only possibility when d(P) = 2 .

To complete the proof, assume that G = F(r,n) is finite, so

that for each k between 2 and n , there is a natural number

m such that (xlxk)m is the identity in C , that is, there is

a reduced van Kampen diagram r having this word as its boundary

label. Assuming that n is not a divisor of any of the numbers

in (3), (4) or (5) we have proved that

(i,j) = (l,k) or (k,l) ,
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where j is one of the numbers listed in (6). This is precluded

by the boundary condition of our theorem, which is now proved in

full.

Theorem 1. Let r ? 2 and n ? 1 be integers subject to the

initial condition that n is not a divisor of any of

r±l, r±2, 2r±l, 3r, 4r, 5r,

and the boundary condition that the numbers

-r, -r+2, n-1, n, 1, 2, 3, r, r+2

do not cover all the residue classes modulo n . Then F(r,n) is

an infinite group.

EXERCISE 1. Prove that when 1 s n s 2r , the pieces in F(r,n)

are just the subwords of x
i+1'

..x
i+r-1

(1 5 i <_ n) and their

inverses. Find another piece when n = 2r .

EXERCISE 2. Prove that a reduced vertex in a reduced van Kampen

diagram for F(r,n) can have degree 3, 4 or 5 only if n

divides one of the numbers in (3), (4) or (5), respectively.

EXERCISE 3. Sketch a typical reduced vertex of degree 5 in

the reduced van Kampen diagram for F(2,n) .

EXERCISE 4. Use the rules of succession (2) to show that if

xi,x
J
. are the labels on the boundary edges incident at a vertex

P of degree 5 3 , then j is one of the 5 numbers listed in (6).

EXERCISE 5. Prove that, whatever the value of r , the initial

condition of Theorem 1 forces n to be at least 8 . Show fur-

ther that when n is 8 or at least 10 , the boundary condition

holds automatically. Deduce that it may be replaced by the simpler

condition that when n = 9 , r # 4 or 5 (mod 9) .
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EXERCISE 6. Use Theorem 1 together with the results proved or

quoted in §9 to confirm that, in the problem of deciding when

F(3,n) is infinite, only the cases n = 7, 9 or 15 remain to

be dealt with.

EXERCISE 7. Prove that when r and n satisfy the conditions

of Theorem 1, F(r,n) has soluble word problem.

EXERCISE 8. Using the results of Lyndon and Brunner on the

F(2,n) , together with Exercise 9.12, show that when r = kn + 2

(k e N) , then F(r,n) is infinite under either of the conditions:

n even and ? 6 , or k even and n ? 11 .
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8 Groups from topology

Nothing puzzles me more than time and space;

and nothing troubles me less, as I never think

about them. (Lamb: Letter to T. Manning)

As will already be plain to the erudite reader, the connections

between the theory of group presentations and algebraic topology

are both substantial and pervasive. Thus, for example, the tri-

angle groups of Chapter V are essentially geometrical objects,

homological methods play a crucial role in the theory of group

extensions (Chapter VI), and Chapter VII illustrates the depen-

dence of small cancellation methods on properties of planar graphs.

The former subject relies on the latter, both for methods and for

examples and this interrelationship has been increasingly in evi-

dence since the inception of both.

A vital bond, in one direction at least, is forged by the

fundamental group of a space and we begin with a study of this,

carrying with us the idea of a surface for a paradigm. Since the

theory of compact connected n-manifolds is in a sense algebraic-

ally complete when n = 2 , we go on to study some examples in

the case n = 3 . We make no apology for our emphasis on al-

gebraic structure and bias towards computational techniques, nor

for the fact that we are merely splashing about on the surface of

what are really very deep waters indeed.

§27. Surfaces

We shall be chiefly concerned with spaces that are locally

Euclidean in the following sense: an n-manifold is a Hausdorff

space M in which every point has an open neighbourhood homeomor-

phic to an open subset of Rn _ {(xl,...,xn) c Rn I xl ? 01 . The

points of M mapped into An _ {(xl,...,xn) E Rxl = 0} com-

prise the boundary aM of M ; that this definition is independent
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of the choice of open neighbourhood and of homeomorphism is a con-

sequence of Brouwer's theorem on Invariance of Domain.

It is customary to restrict attention to manifolds that are

compact and connected. The first of these strictures is a fairly

specious one, for though an arbitrary manifold can be compactified

by the addition of a single point and the result is a Hausdorff

space (manifolds are obviously locally compact), it may no longer

be locally Euclidean at the extra point. On the other hand, given

that a manifold is compact, the requirement that it be connected

is relatively harmless (see Exercise 2).

We get to grips with the structure of manifolds by means of a

triangulation, and to define this, we need some nomenclature. An

n-simplex S is the convex hull of a set V of n+l affine

independent points in some Euclidean space E (necessarily of

dimension at least n ). The convex hull of a subset of V is

called a face of S . A finite collection K of simplexes in a

common ambient Euclidean space E is called a simplicial complex

if it contains every face of each of its members, and two simplexes

in K intersect in a common face of each. The union of the mem-

bers of such a K inherits the topology on E and is called the

underlying polyhedron of K , written IKI . Finally a manifold is

triangulable if it is homeomorphic to the underlying polyhedron

of a simplicial complex. It is a profound and fairly recent

result that all manifolds of dimension n are triangulable if

and only if n <_ 3 .

That 1-manifolds are triangulable is a fairly straightforward

exercise in point-set topology, and given this information, it

is not hard to classify them (see Exercise 3, where the crucial

step is to show that the number of edges meeting at a vertex is

either one or two). Passing on to dimension 2 , we define a

surface to be a compact, connected 2-manifold without boundary.

Our main object in this section is to sketch the classification

of surfaces, and we begin with some familiar examples (see Fig.l).

In each case, the space depicted includes the interior of the

simple closed curve, whose segments are labelled and oriented as

shown. Segments with like labels are identified with one another
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a

a

b

a

b b

Fig.l

b b b

a

(via the quotient topology), so that the unlabelled segments

comprise the boundary of the resulting surface. With this con-

vention, the diagrams now depict S2, D, P, C, T, K and M

respectively. Only three of these have non-empty boundary,

namely,

0=S1= 2M, 8C=S16S1 ;

we refer to these as surfaces-with-boundary.

We skate round the question of orientability by using an

equivalent property: a surface-with-boundary is called non-

orientable if and only if it has a subspace homeomorphic to M

Apart from M itself, exactly two of these 7 spaces are non-

orientable, as the following diagrams show (Fig.2). It is

a

B

b

A

f
a

A

b

B

Fig. 2

worthwhile to examine what remains in each case when the interior

of the Mobius band is removed: we arrive at the pictures of Fig.3,

where identifications have been made along the dotted lines.
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A B

a
V

B A

Fig.3

A

Comparison with Fig.l shows that this operation turns a Klein

bottle (real projective plane) into a Mobius band (closed disc).

Turning this process around, we can say that identification of

the boundaries (both Sl ) of two copies of M yields a Klein

bottle, and the same operation performed on a closed disc and a

Mobius band yields a projective plane. Alternatively, if we

remove the interior of a closed disc from two copies of P and

identify the boundaries via a homomorphism, we get a Klein bottle.

This suggests the following very useful definition: let M and

N be surfaces, remove the interior of a closed disc from each,

and identify the boundaries via a homeomorphism. The resulting

quotient space is called the connected sum of M and N

written M # N .

That this definition is independent of the location of the

closed discs is a consequence of the Disc Theorem, and its inde-

pendence of the choice of identifying homomorphism is shown by

similar methods. Assuming this, it is obvious that the operation

# is commutative and associative. Furthermore, it is intuitively

clear that M # N is orientable if and only if both M and N

are.

Given a pair of triangulated surfaces M,N , their connected

sum can be formed by removing the interior of a triangle from each

and identifying the resulting boundary edges and vertices seriatim

in pairs. On the other hand, if M,N are specified as a labelled

2m-,2n-gon (as in Fig.l) respectively, we can proceed as follows.

First ensure that the sets {xl,...,xm} and {yl,...,yn} of

labels are distinct. Then choose an edge of each (labelled

xl,yl say) whose end-points are not identified in forming the

quotient space; to do this, it may be necessary to break up an
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edge (and its companion) into two by inserting an extra vertex

at the midpoint and relabelling, as in Fig.4(I) below. Deletion

of the labels xl corresponds to removal of an open disc, and

relabelling these edges with yl then glueing M and N to-

gether along a yl yields a picture of M # N as a 2(m+n-l)-gon.

Note that as a special case of this surgery, the reversal of a

single arrow on a labelled 2n-gonal depictation of a surface M

converts it into M # P . This is illustrated by the following

example, which also foreshadows the proof of the classification

theorem for surfaces.

Example 1. Letting the symbol = stand for homeomorphism of

spaces for the nonce, we have seen already that P # P = K , and

it is fairly clear that M # S2 = M for any surface M . It is

much less obvious that K # P = T # P ; that this is indeed the

case is illustrated in the following sequence of pictures (Fig.4).

b c b

a

b

b

a I d

C

C

a

b

a

c

5 4

b

c

b

a

a

II d

IV

c

Fig.4

c

c

c

d

b

d

b

b

d
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I represents K and T , while in II an open disc has been

removed from each. In III, the connected sum is formed with P

and a cut made along d,a respectively. IV represents the

situation when the identifications corresponding to b are made.

The resulting hexagons have pairs of sides identified in accord-

ance with the same code, namely, a2d-1c-1d-lc , and thus are

homeomorphic.

We are now in a position to compile a list of surfaces by

applying the operation # to finite collections of copies of the

prototypes T and P . Thus, for any integer m ? 0 , we define

Tm = connected sum of m tori (T = S
2

) ,

Pm = Tm # P , and (*)

K = T # P # P
m m

It is a remarkable and beautiful result that every surface is homeo-

morphic to onne member of the list (*). We proceed to outline a

proof of this, modulo various assumptions that are intuitively

reasonable but non-trivial to prove (such as the existence of a

triangulation and the invariance of the Euler characteristic - see

below).
To see that (*) involves no duplicates, first note that the

orientable members of the list are just the T
m

(It turns out

that these are precisely the members of ('*) that embed in R3 .)

Next, given a triangulation of a surface M that involves f

faces, e edges and v vertices, we define the Euler character-

istic of M as follows:

X(M) = v - e + f .

Theorem 1. If M and N are surfaces, then

X(M # N) = X(M) + X(N) - 2

Furthermore,
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X(S2) = 2 , x(P) = 1 , x(T) = 0 ,

and

X(Tm) = 2 - 2m , X(Pm) = 1 - 2m , X(Km) = -2m .

The surfaces Tm,Pm,Km (m ? 0) are pairwise non-homeomorphic.

Proof. Assuming M and N to be triangulated, we form their

connected sum by removing a face from each and identifying the

triangular boundaries as described above. The total number of

vertices, edges and triangles thus drops by 3,3,2 respectively.

The net diminution of X(M 6N) = X(M) + X(N) is thus

3 - 3 + 2 = 2 , which proves the first assertion.

Next we compute X for S2, P and T , noting that the first

of these is just Euler's formula (see formula 24.(l), where we

must add 1 to account for the unbounded component of R2\M ).

We leave this and P as an exercise, and draw the picture for T

(Fig.5). All told, there are 9 vertices (O,A,B,X,Y and the four

vertices of the central rectangle), 27 edges (a,b,c,x,y,z and 21

interior ones), and 18 triangles. Thus, X(T) = 9 - 27 + 18 = 0

as required.

a

z

Y

y

X

x

0 a

b c

A b B

Fig.5

c

z

y

x
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The computation of X(*) is a simple induction based on the

previous assertion. Finally, given the invariance of X , the

only possible duplication in the list is between Tm and Km-1

(m e N) , and this is precluded on the grounds of orientability.

Theorem 2. Every surface is homeomorphic to one of the surfaces

Tm,PM,Km (m ? 0) in the list (*).

Sketch of proof. Given that an arbitrary surface S is tri-

angulable, it follows from properties of simplicial complexes and

of the quotient toplogy that S can be represented in the plane

by a 2n-gon with labelled oriented edges identified in pairs.

Since the order in which the identifications are made is imma-

terial, S is determined by the identification code, that is,

the word w obtained by juxtaposing the labels on the edges of

the 2n-gon. As in §23, this word is determined only up to cyclic

conjugacy and inverses.

The identification code for a connected sum of two surfaces is

obtained simply by juxtaposing those of the components. Thus, if

two adjacent edges of a labelled 2n-gon carry the same label a

the corresponding surface is just the connected sum of a surface

with shorter identification code and either S2 or P , according

as the orientations of the edges labelled a is unlike or like.

Since (*) contains S2 and P and is closed under # , we can

assume that the 2n-gon representing a minimal counter-example S

does not have a pair of adjacent edges with the same label. Now

if S has a pair of edges with the same label and like orien-

tation, a single surgery (of the type used to pass from III to IV

in Fig.4) results in the replacement of these by an adjacent pair.

This leaves the situation where any pair of identified edges have

opposite orientations. In this case, we first find two such pairs

that are separated, as in the code ...x ...y l...x...y where-

upon two surgeries are needed to isolate the commutator [x,y]

which then splits off as a torus. The reader is invited to supply

the details, or to consult one of the standard texts.

The vital role played in the proof by identification codes
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suggests that the following definition might be significant. A

group G is called a surface group if it has a presentation

<XIR> , where R = {r} is a singleton, r is the identification

code of a member of (*) , and X consists of the distinct let-

ters involved in r . Specifically, G is a surface group if it

has a presentation of the form

m k

<al,bl,...,am,bm,xl,...,xk I Ti [ai,bi1 11 x.>

i=1 j=1 I

(+)

where k = 0 (T m), 1 (P m), or 2 (Km) .

We put this in a broader context by defining a few suitable

terms. A continuous mapping f from I = [0,11 into a topo-

logical space X is called a path from f(0) to f(l) in X

X is said to be path-connected if there is a path between any

two of its points. The constant path at x c X sends everything

to x , the reverse f of the path f sends each t E I to

f(1-t) , and the composite of the paths f,g (with f(l) = g(0))

is given by

f . g : I -} X

f(2t) , is
g(2t-1) , t > 2

I

Furthermore, two paths f,g: I -} X are said to be equivalent if

there is a continuous mapping F: I x I -> X such that

F(s,0) = f(s) , F(s,l) = g(s) , and

F(0,t) = f(0) = g(0) , F(l,t) = f(l) = g(1) .

Note that such an f and g must have a common initial point and

a common end point, and F is called a homotopy from f to g

relative to I' = {0,1) . Finally, a path f: I -> X is called a

loop at X E X if f (O) = f(l) = x .

Bearing these definitions in mind, it is not hard to show that

the equivalence classes of loops at x e X form a group under

composition of representative paths, and that when X is path-
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connected, this group is independent of the choice of base-point

x E X . For a path-connected X , this group is denoted by

Tr 1(X) and is called the Poincare group, first homotopy group,

or fundamental group of X . The following intuitively reasonable

result is stated without proof, and will come as no surprise to

the sanguine reader.

Theorem 3. The surface group (+) is just the fundamental group

of the corresponding surface in (*).

If K is a simplical complex and IKI is connected, we can

compute r1(IKI) as the edge-path group of K , and there results

an alternative method for finding n1 of a surface. We conclude

this section by describing it. Since K is connected, so is its

1-skeleton r (set of vertices and edges), and an elementary

theorem of graph theory tells us that this contains a maximal

tree A , that is, A is a connected subgraph of r having no

loops and the same vertex set as F . Now orient the edges of r

and give them distinct labels - call the set of labels X . If

R denotes the set of labels on the edges of A , and S the set

of boundary labels on the triangles of K (so that R consists

of one-letter words and S of three-letter words), then the edge-

path group of K is given by

r1(IKI) = <XIR,S>

Example 2. We find 71(T) by using the triangulation of Fig.5

and computing its edge-path group. We redraw the picture (Fig.6),

indicating the edges of the maximal tree A by heavy lines (8

all told, since there are 9 vertices and X(A) = 1 ). Note that

identified edges receive the same label and that, to save time,

we have not labelled or oriented the edges of A , since these

correspond to the identity element of
71

. As a consequence,

the same is true of all edges of all triangles in the shaded

region, and hence of the other four unlabelled edges (formerly
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C

Fig.6

C

x,y,a,b ). Thus the edges -*p.- are all z and the edges -+ -

are all c . Only one extra label (d) is needed, and we obtain

the following presentation:

Trl(T) = <c,d,z I zc = d = cz>

and this is clearly Z x Z , as required.

EXERCISE 1. Give an example to show that, in the definition of

an n-manifold, the requirement that the space be Hausdorff is not

superfluous.

EXERCISE 2. Prove that a compact n-manifold M has only fi-

nitely many components, that each of these is a compact n-mani-

fold, and that M is their topological sum.

EXERCISE 3. Show that a compact connected 1-manifold is homeo-

morphic either to I or to S1

EXERCISE 4. Use Tietze transformations to prove that

<a,b I baba-1> = <x,y I x2y2>

[Hint: P # P = K . ]

255



EXERCISE 5 (cf. Example 1). Prove that the groups

<a,b,c jabca-lbc> , <b,c,d I dcbd-lb-lc-l>

are isomorphic.

EXERCISE 6. Use the surgery illustrated in Example 1 to prove

that the double torus (a pretzel) T #T can be represented by

the decagon of Fig.7. By mentally identifying the pairs of edges

v,a,b,c,d respectively, convince yourself that this depictation

a b a b
1, 0 4 0 -

v V

c d

Fig.7

c d

makes sense intuitively. Use Tietze transformations to prove

that the groups

<a,b,c,d,v I
vaba-lb-lv-ldcd-lc-l>

<x,y,z,tI [x,y][z,t]>

are isomorphic.

EXERCISE 7. Assuming the classification theorem, convince your-

self that # induces a binary operation on the set of homeomorphism

classes of surfaces, and that the resulting monoid has the presen-

tation

<t,p Itp = pt, tp = p3>
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EXERCISE 8. By triangulating S2 and P , compute their Euler

characteristics. (Beware of bogus triangles with only 2 vertices,

and of pairs of triangles intersecting in an edge and the other

vertex, for these are not allowed.)

EXERCISE 9. Let M,N be surfaces and remove the interiors of

two disjoint closed discs from each, and let M # # N denote the

result of identifying their boundaries (both = S1 6S1 ). What

can you say about this space?

EXERCISE 10. Given a surface of Euler characteristic X , tri-

angulated with f triangles, e edges and v vertices, prove

that

3t = 2e, e = 3(v-X), and

v >- z (7 + (49-24X) )

EXERCISE 11. Describe surgery that makes two pairs of adjacent

like edges adjacent to each other.

EXERCISE 12. Identify the surface represented by the 2n-gon with

boundary label x1x2...xnx11...xn1 xn ? Do the same for

x1x2...xnx-1x21...xn1 (the cases n even or odd are different

here).

EXERCISE 13. Describe a surgical process for reducing a 2n-

gonal surface to one in which all vertices become identified in

forming the quotient space. [Hint: consider a pair of adjacent

vertices in distinct classes A and B , and find a single cut

and paste which reduces CBI by 1 , increases JAI by 1 and

leaves the other classes fixed.]

EXERCISE 14. Let G = <Xlr> be a one-relator group such that

each x e X appears (as x or x-1 ) exactly twice in the
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cyclically reduced word r . By using Tietze transformations

corresponding to the surgery employed in Example 1, prove that G

is isomorphic to the free product of a free group and a surface

group.

EXERCISE 15. Let G be as in the previous exercise. Assuming

that the 2n-gon with identification code r has all its vertices

identified, prove that G is a surface group (i.e. the free

factor is absent). Is the converse true?

EXERCISE 16. Prove that I is connected, and deduce that path-

connected spaces are connected.

EXERCISE 17. Use Theorem 3 and the Basis theorem (6.5) to show

that a member M of the list (*) is characterised by its first

homology group H1(M) = 7T1(M)ab . Observe that in each case,

H1(M) is minimally generated by 2-X(M) elements.

EXERCISE 18. By triangulating and finding the edge-path group,

compute
it1

for S2, P, K and T2

EXERCISE 19. What can you say about the fundamental group of a

surface minus the interiors of one or more closed discs? Experi-

ment with some suitably simple triangulations, modified in the

obvious way.

§28. Knots

A knot is a continuous injection K: S1 -* R3 . Since Sl is

compact and R3 Hausdorff, such a K is automatically an embed-

ding. A knot may thus be regarded as an injective loop in R3

or as a piece of string in the real world with its ends spliced

together. Higher-dimensional knot theory deals with embeddings

of Sm in Rn , with n ? m+2 to avoid triviality. We restrict

ourselves to the popular case n = 3 = m+2 , and begin with some

examples. The pictures in Fig.l represent the unknot, the trefoil
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Fig.l

knot, and Listing's knot respectively. We hope these pictures are

self-explanatory, though the idea of planar projection will be

made more precise shortly.

Knot theory is the study of knots up to equivalence or (knot)

type, where two knots K and K' are equivalent if and only if

there is a self-homeomorphism of R3 sending IM K to IM K' .

The elementary knot deformations of types 1, 2 and 3 respectively

are illustrated in Fig.2, and it is intuitively clear that local

Fig.2

application of each preserves the type of a knot. Though by no

means obvious, the converse is also true: if two knots are equiv-

alent, one can be obtained from the other by a finite sequence of

elementary knot deformations, provided that in each case the

number of crossings (0,3,4 in Fig.l, for example) is finite.

A knot K is called polygonal if Im K is the union of a

finite set of straight line segments. A knot is called tame if

it is equivalent to a polygonal knot and wild otherwise. Before

consigning the latter to the shelf of oblivion, we give an

example due to R.H. Fox.

Example 1. In the diagram of Fig.3, the loops decrease in size
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Fig.3

and increase in proximity in much the same way as the oscillations

in f(x) = x sin 1/x as x -* 0 . The result is a rectifiable

curve and a continuous image of S1 , just as f becomes continu-

ous at the origin if we define f(O) = 0 .

The above examples have been portrayed by planar projection,

that is, the image of the knot has been projected into a plane in

R3 by the parallel projection perpendicular to the plane, over-

crossings and undercrossings at a double point being indicated in

the obvious way. Such a planar projection is called regular if

there result only finitely many multiple points, all these are

double points, and each represents a genuine crossing. Thus we

exclude the pathologies shown in Fig.3 and Fig.4.

Fig.4

By passing to 3-dimensional projective space, it can be shown

that every polygonal knot has a regular planar projection. More-

over, it turns out that the type of a knot is determined by any

regular planar projection of it. Thus, providing we restrict our

attention to tame knots, a complete theory can (in principle) be

evolved using regular planar projections as models.

A knot K can be oriented by affixing an arrow to IM K , and

two o-knots are of the same o-type if they are equivalent (without
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the arrows) via a self-homeomorphism of R3 that preserves the

orientation of their images. Given an o-knot K , we can form

its reverse Kr by reversing the arrow, its obverse KO by re-

flecting a regular planar projection in the plane of the paper

(overcrossings 4--> undercrossings), and its inverse K. by

doing both (in either order). A knot K is reversible, amphi-

cheiral, or invertible if K is o-equivalent to Kr, KO or K.

respectively. For example, Listing's knot is amphicheiral while

the trefoil knot is not, and both are reversible. That the re-

sulting tetrachotomy is a genuine one (that is, the four-group

acts faithfully on the o-classes) was proved as recently as 1963,

when H.F. Trotter exhibited the irreversible knot depicted in

Fig.5.

Fig.5
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Turning to invariants of knots, that is, properties shared by

all knots of the same type, we define the group of a knot K to

be 7r1(R3\Im K) . We describe how to derive a presentation for

this group from a regular planar projection, and also give a

method for computing another well-known invariant, the Alexander

polynomial. The latter is actually an invariant of the group,

and instead of a formal definition, we merely explain a few

algorithms for computing it. In fact, the rest of this section

is entirely computational.

We begin by deriving the Wirtinger presentation of the group

G of a knot K from a regular planar projection. First orient

the knot, and then label the crossings and segments in order.

Thus,, if there are n undercrossings, these are labelled

P1,...,Pn and the segment from Pi-1 to P. is labelled xi

(1 5 i _< n, subscripts mod n). Let 0 be a base-point above

the plane of projection, so that G has a member that contains

a path from 0 to itself and encircling x
i

once (in the sense

of a right-handed screw), but encircling no x
J

, for j s i .

To avoid confusion, we denote this element of G by xi ; it is

intuitively plain that xl,...,xn generate G .

Fig.6

Now suppose the overcrossing segment at P i has label x
J
. ,

and consider four points A1,A2,A3,A4 below the plane of pro-

jection and one in each sector, as indicated in Fig.6. It is
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clear that the path 0 - Al -> A2 -> A3 -> A4 -> Al -* 0 , made up of
rectilinear segments, is contractible in the RS\Im K , and

since it is equivalent to

0 - > Al -> A2 -> 0 -* A2 -* A3 -} 0 -> A3 -* A4 -} 0 -* A4 -> Al 0 ,

the word x-
1

x. xi x-1 is equal in G to e . If the overhead
J J

crossing is from left to right, it is clear that x.
J

must be re-

placed by its inverse. Intuition again asserts (correctly) that

these n relators define G . Passing over the unknot, whose

group has one generator and no relations, we carry out this com-

putation for the trefoil knot.

Example 2. The result of orienting and labelling the knot is

depicted in Fig.7, and we easily read off the following

Fig. 7

presentation for its group:

-1 -l -1
G = <xl,x2,x3 I x2 = x3 x1x3, x3 = x1 x2x1, x1 = x2 x3x2>

Removing the spare generator x3 , the two remaining relations

coincide, and we have

G = <x1,x2 1 xlx2xl = x2x1x2>

or, using further Tietze transformations,
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G = <x,y I x2 = y3>

In order to derive the Alexander polynomial of a knot from the

Wirtinger presentation (or any other) of its group, we need the

idea of a Fox derivative. For any word w E F = F(X) , its Fox

derivative aw/2x is defined for each x E X and belongs to ZF.

There is one term of aw/2x for each occurrence of x in w

if w = uxv (reduced), this term is u , while for w = ux 1v

it is -ux 1 . The sum of these terms is 3w/9x . As an example,

we express the Fox derivatives of the relators

-1 -1
rl = x1x3x2 x3

-1 -1
r2 = x2x1x3 X1

-1 -1
r3 = x3x2x1 x2

just obtained for the group of the trefoil knot, as a 3x3 matrix

A with (i,j)-entry Dr./ax :

1 -x1x3x21 x1 - x1x3x21x31

A = x2-x2x1x31x11 1 -x2X1x31

-x3x2X11 x3- x3x2x11x21 1

The result of replacing each x
i

by t is a matrix over Z<tI >:

1 -t t-1 \

t-1 1 -t 1

-t t-l 1 /

If we delete the last row and column of this matrix and compute

the determinant, the result is the Alexander polynomial of the

trefoil knot:

A(t) = 1 - t + t2

It follows from elementary properties of Fox derivatives that
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the Alexander polynomial is determined only up to multiplication

by ± an integral power of t . But if we normalize to make it a

polynomial with positive constant term, the result is uniquely

determined by the type of the original knot. There are other

polynomial invariants of knots, but their computation is fairly

complicated, essentially because Z[tl is not a principal ideal

domain.

The Alexander polynomial can also be computed using Seifert's

method, which we now describe. The knot is marked up as above,

and in addition, we attach a sign (±1) to two of the three

segments at each undercrossing as illustrated in Fig.8. When the

Xi+1 / Xi+1

Fig.8

overcrossing is from left to right (right to left) the top segment

receives a +1 (-1) , and the segment on its left the other. If

there are n crossings draw up the nxn matrix whose (i,k)-entry

is the label (±1) attached to the segment xk by the crossing

P.
i

(0 if it gets no labels, or their sum if it gets more than

one). Delete the last row and column of this matrix, and let S

be the (n-l)x(n-1) matrix whose kth column is the sum of the

first k columns of this. It then turns out that the Alexander

polynomial is just det(S - t(S-I)) , normalized in the usual way.

Example 3. Marking up Listing's knot according to the above

scheme as in Fig.9, the sequence of three matrices is as follows:

1 0 0 -1

1 0 -1 0
1 0 0 1 1 1

-; 1 0 -1 i 1 1 0
0 -1 1 0

-1 0 1 0
0 -1 1 0 -1 0
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We thus seek the determinant of

1 1 1\ /0 1 1\ / 1 1-t 1-t

01 -1 0 / - t \0 _0 -0

1-t
0t-l 0

and this is easily seen to be - (t
2
- 3t +1) , which may be com-

puted directly, or by first simplifying the matrix using elemen-

tary row and column operations. We conclude that A(t) = 1-3t+t2

for Listing's knot.

Fig.9

This method can also be used to compute other knot invariants,

namely, the invariant factors of the kth homology group of the

k-fold cyclic covering manifold associated with the knot, and

these are just the invariant factors of the matrix Sk - (S-I) k

for any k E N (cf. §6).
An alternative method of finding the group of a knot is due to

M. Dehn. Orient the knot as above, and label the faces (including

the outside) by distinct symbols. At each crossing of the type

indicated in Fig.10, record the word ab-1cd-1 . If there are n

crossings, the result of putting any face-label equal to the

identity will leave n+l symbols (see Exercise 6) and n words

in them; this is a presentation for the group of the knot.
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a

b

Fig.10

d

c

Example 4. The result of orienting Listing's knot and labelling

its faces is depicted in Fig.ll. Starting at P1 (see Fig.9), we

Fig.ll

obtain the following relators in turn:

cf-lab-l, ed-laf-l, ad-lcb-l, of-lcd-1

Letting e fulfil its natural role, the second and fourth of

these yield a = df and c = fd respectively. Eliminating

these, and also b using the third relator, we are left with

<d,f
I
fdf-1dfd-lf-ldf-ld-1>

the group of Listing's knot.

By marking up the knot in the same way, we can now describe
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Alexander's original method for finding his polynomial. For a

knot with n crossings, draw up the n x (n+2) matrix whose

columns are headed by the face labels, and whose ith row con-

tains the symbols t, -t, 1, -1 under the labels a, b, c, d

respectively, where the ith crossing is as in Fig.10. Put all

other entries equal to zero, delete any two columns headed by

labels of faces with a common edge, and take the determinant.

This is the Alexander polynomial. Taking Listing's knot as an

example, we obtain the following array:

a b c d e f

1 -1 t 0 0 -t
1 0 0 -t t -1

t -1 1 -t 0 0

0 0 1 -1 t -t

Deleting the c and d columns, we o btain

1 -1 0 -t 1 -1 0 t

1 0 t -1 0 1 t t-l 1

t -1 0 0 0 t-1 0 t2

0 0 t -t 0 0 t -t

clearing the first column. The determinant is

(t-1)2t - (t3 - t2(t-1)) = t3 - 3t2 + t ,

which normalizes to 1-3t+t2 , as in Example 3.

We conclude this section with a brief discussion of Conway's

potential function. We need the following definition: a link is

an embedding of a finite topological sum of circles in R3

oriented if its component circles are. Then we can associate

with any oriented knot or link K a polynomial VK(z) e Z[z]

in such a way that V of the unknot is the constant polynomial

1 , and the following condition holds. If an overcrossing in K of
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Fig.12

the type shown in the first diagram of Fig.12 is replaced by that

shown in the second, third diagram, we denote the resulting

oriented knot or link by K, K , respectively. Then we have

V (z) - V-(Z) = zVo(z)
K

(*)

It turns out that such a V exists, and is determined uniquely

(not just up to multiplication by ± a power of z ) by the type

of the o-knot or o-link. Furthermore, there is exactly one such

V , in that the above three conditions enable us to compute its

value for any o-knot or o-link. Finally, it is related to the

Alexander polynomial A by the following identity:

V(x-x-1) = A(x2) f

suitably normalized.

In order to set up a suitably general example, note that the

diagrams in Fig.12 are the tangles +1, -1, 0 of §30. Two tangles

are added by splicing together the NE,SE ends of the first to the

NW,SW ends of the second. This operation is plainly associative

and we can add any finite set of tangles together. Liven any

tangle, we can splice together its two northern ends, and also its

two southern ends to obtain an o-knot or o-link. For example, if

we add together n copies of the tangle +1 (n c N) , we get the

Fig.13
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tangle n , whose o-knot or o-link (also called n) is illustrated

in Fig.13 for n = 4,5 . It is clear that 4 is a 2-link and 5 a

5-knot, and that both embed in an (unknotted!) torus in R3 . We

are now ready to compute the Alexander polynomial of the knot

2n + 1 .

Example 5. Concentrating on the leftmost crossing (see Fig.l3),

it is clear that for n ? 2 ,

n = n-2 , n = n-l .

It follows from (*) that 4n(z) = zVn-1(z) + 4n-2(z) for n ? 2

and that V (z) = 0 , V1(z) = 1 (see Exercises 9,8). A simple

induction on n now shows that for n ? -1 ,

n
Vn+l (X-X-1) =

C (-1)kxn-2k

k==O

whence the Alexander polynomial of the torus knot 2m+l is given

by

2m
A(t) _ I (-t)1

i=0

EXERCISE 1. Use elementary knot deformations to convince your-

self that Fig.l comprises a list of all knots with at most four

crossings. Draw the two five-knots.

EXERCISE 2. Use the Wirtinger presentation to show that, for

any tame knot K , HI(R3\Im K) = Z .

EXERCISE 3. Use the previous exercise to show that every knot

group has deficiency 1 .

EXERCISE 4. Deduce from Exercise 2 that if G is a knot group,

then conjugation within G imbues G'/G" with the structure of

a ZZ-module.

0
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EXERCISE 5. Compute the Alexander polynomial of the trefoil

knot by Seifert's method, and that of Listing's knot by Fox's

method.

EXERCISE 6. Use Euler's formula to show that the number of

faces (including the outside) of a regular planar projection of

a knot exceeds the number of its vertices (crossings) by two.

EXERCISE 7. Compute the group and Alexander polynomial of the

trefoil knot using Dehn's method and Alexander's method,

respectively.

EXERCISE 8. Convince yourself that splicing the tangles 1 and

3 yields the unknot and the trefoil knot, respectively.

EXERCISE 9. A link is called split if its component circles can

be partitioned into two non-empty sets whose unions are respect-

ively embeddable in disjoint (homeomorphic images of) 3-balls in

R3 . Show that if K is a split o-link, then VK(z) = 0 .

EXERCISE 10. Use Conway's method to compute the Alexander poly-

nomials of Listing's knot and the other 5-knot you drew in Exer-

cise 1 (not the tangle-knot 5).

EXERCISE 11. Prove that the faces of a knot in regular planar

projection can be coloured black and white in such a way that

faces with a common edge have opposite colours, as on a chess-

board.

EXERCISE 12. Define the sum of two knots K and K' to be the

result of removing an open line segment (= (0,1)) from each and

identifying the two pairs of boundary points, according to orien-

tation if necessary. Convince yourself that this definition is

independent of the location of the deleted segments.
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EXERCISE 13. A knot is called prime if it admits no decompo-

sition as a sum of non-trivial knots. Show that every tame knot

is a sum of prime knots.

EXERCISE 14. Every boy scout knows that there are two inequiv-

alent 6-knots. Draw them, name them, and prove that they have

the same group.

EXERCISE 15. Can you distinguish between the true lovers' knot

and the false lovers' knot (Fig.14)?

Fig.14

§29. Braids

Consider two parallel planes in R3 , and name them the upper

and lower frame respectively. For a fixed n E N , choose n

distinct points U1,...,Un in the upper frame, together with
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their orthogonal projections L1,...,Ln in the lower. Now join

each U. to some L
J

. by a polygonal arc si (called the ith

string) in such a way that:

(i) the si are pairwise disjoint,

(ii) any plane between and parallel to the frames meets each

s
i

exactly once,

(iii) the correspondence i - j defines a permutation of

{1,2,...,n} . The resulting configuration is called an n-braid

and can be represented in the plane by a suitable parallel pro-

jection, in the same fashion as a tame knot. Thus, for example,

Fig.l depicts the 3-braids later to be called x1 and x2 .

U3

L1 L3 L1

Fig.l

Fig.2

Two n-braids can be composed by hanging the second on to the

first, that is, by identifying the lower frame of the latter with
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the upper frame of the former (in such a way that the chosen

points are identified in the right order), removing this plane,

then compressing the resulting slice of R3 by an affine trans-

formation to half its thickness. Thus Fig.2 depicts the products

x1x2x1 and x2x1x2 .

Notice that these two braids are equivalent, in the sense that

an elementary knot deformation of type 3 (see Fig.28.2) transforms

one into the other. Thus two braids are equivalent if the planar

projection of one can be deformed into that of the other by a fi-

nite sequence of moves of types 2 and 3 (type 1 being precluded

by condition (ii) on the si ). It is intuitively clear that

composition of classes is independent of choice of representatives

and obeys the associative law. Also, the braid with no crossings

acts as the identity, and the inverse of a braid is obtained by

reflecting it in the lower frame. The resulting group is called

the braid group on n strings and written B
n

.

Now let v: Bn } Sn denote the mapping which assigns to any

braid the permutation (i - j) of condition (iii) above. Now v

is an epimorphism and its kernel is called the unpermuted braid

group. Further, if Sn-l denotes the stabilizer in Sn of 1

B
n-l Ker v

Ker p

O E

Fig.3
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the operation of cutting and removing the first string yields an

epimorphism p: v- 1(Sn-1) }
Bn-1 '

which preserves the unpermuted

braid group, and whose kernel is called the group of 1-pure

braids. We thus arrive at the Hasse diagram of Fig.3. The

obvious inductive value of this chain of subgroups will be

exploited later, at a rigorous level, to elucidate the structure

of the braid groups.

From what has been said, it is clear that Bn is generated by

{xl' ...Ixn-1} '
where xi denotes the braid whose ith string

crosses over its (i+l)st and there are no other crossings. Now

consider the space obtained by removing all n strings of a given

braid from the slice of R3 between the upper and lower frames.

Its fundamental group is the same as that of R2\{n distinct

points} , namely, the free group F
n

of rank n . For free gen-

erators, we can take {al,...,an} , where ak+l denotes the class

of the loop (based at B to the left of the strings, as in Fig.4)

which passes over the first k+l strings, under the (k+l)st ,

and then over the first k again back to B . Fig.4 illustrates

the action of xk on this free generator; 'sliding down the

string' transforms it into ak+lakak+l . Since the only other

free generator not fixed by xk is ak , which passes to ak+l

there results an automorphism
Ek

of Fn sending

1 k-1

Fig.4

k k+1 k+2 n
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(al,.... ak'ak+l'...,a) to the new basis

-1
(al,.... ak+l,ak+lakak+l,...'an)

(see Exercise 1). With this notation, the geometrical braid group

on n strings is defined to be the subgroup G
n

of Aut F
n

gen-

erated by 1' ...'cn-1 .

It will later turn out to be crucial

that each element of Gn fixes the product an...a1 of free gen-

erators.

Now observe that the generators x1,...,xn-l of the braid

group satisfy the relations

S = {xjxj+l x. = xj+lxjxj+l
1 1

<_ j 5 n-2}

x. 11 <_ j < k-l <n-1} .T = {x .xk = xk

That x. commutes with x. when li-jl ? 2 is clear from the

definition, while a typical relation in S is illustrated in

Fig.2. We now change the meaning of the symbol B
n

, and let it

stand for the algebraical braid group in n strings, defined as

follows:

Bn = <xl,...,xn-1 I S,T>

(1)

Thus, both G
n

and B
n

are defined rigorously, and it follows

from the Substitution Test that both Sn and Gn are homomorphic

images of Bn (see Exercises 2 and 3).

If v denotes the epimorphism from Bn to Sn fixing the xi

(by san), and Sn-l is the stabilizer in Sn of 1 , write

Cn-1 = v-1(Sn-1) ,
a subgroup of index n in Bn . The first

step in exploring the structure of Bn , as suggested by Fig.3, is

to find a presentation for Cn-l using the Reidemeister-Schreier

process described in §12. Now a right transversal for Sn-l in

Sn is given by

ui = xl...xi , 0 <_ i <_ n-l , (2)
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(cf. the proof of Theorem 5.3), and the corresponding members of

Bn thus form a right Schreier transversal for Cn-1 in Bn .

Using the braid relators S and T , together with the fact that

xi E Ker v 5 Cn-1
,
we see that

(3)

for 0 <_ i 5 n-l, 1 <_ j <_ n-l . Thus, Cn-l is generated by the

yij := uixj u
i
x
j

, with defining relators

-1 -1 -1 -1
s.. uix.x. x.X X. X U.
iJ J J+1 j j+l j J+l i

-1 -1
tijk uixjxkxj xkui

with subscript ranges as in (1),(2).

Now the rewriting process is vastly simplified by the identities

y y-1
2 i+l < j n-l (4)iJ i lj = ti-lij

yi-1'y-1 - ti-1'i , 2 <- j+l < i n-l ,

J J J (5)

-1 _

yi+liyi-liyi+li si-li '

1 <_ i s n-2 , (6)

which hold in the free group on xi,...,xn-1 . It follows from

(3) that, in Cn-1
'

yij (7)

where a. := u. x?u-1 (1 n-i) . The result of the re-
i

writing is expressed in Tables 1 and 2 for the si. and
tiJ'k

respectively, where e's appear due to the Tietze transform-

ations corresponding to (4),(5),(6).
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j < i-1 x.+l xj+2 xj+l xj+2 xj+1 xj+2 1 _< j n-3

j = i-1 x. a .

l
a +1x

-1
a

+1
1 5 j s n-2

++l J jJ j J j
j = aj xj+1 aj+l xj+1 l s j n-2

j = i+1 e (6)

j > i+1 x.x. x
x

x.

x 2 < J < n-2j+1
j+1 j+1

Table 1

i < j-1 1 xklx xk x 1 < j <k-1 <n-1j
j

i = j-1 e (4)

i = j X k a j l xkl 1 j< k-1 < n-1

j< i< k-1 xj+1 xk xj+1 xkl 1 5 j< k-2 < n-2

i = k-l e (5)

i = k xj+1 ak xj+1 a-1k 1 < j < k-1 < n-1

i> k 1
x j +l xk+l x j +1 xk+1 1 5 j< k-1 < n-2

Table 2

Thus we have

Cn-1 = <x2,.... xn-1'al,.... an-1 I R,S,T>

where

S = {x.xj+l x. = xj+lxjxj+l
1 2 <_ j <_ n-2}

T= {xjxk=Xkx.l25 j <k-l <n-l}

and R consists of the relations (see Exercise 4)

ak

xk ajxk akak-lak

a.
3

if j = k-l

if j = k

otherwise.

(8)

(9)

(10)
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Now let An-1 and Bn-1 be the subgroups of Cn-1 generated

by the a's and x's respectively. Then it follows from the

results of 920 that

(i) Bn-1 is correctly named, by (9),

(ii) An-1 is free of rank n-1 (see also Exercise 5),

(iii) Cn-1 is a split extension of Bn-1 by An-1 (Exercise 17.3).

A simple induction now gives the following structure theorem.

Theorem 1. The algebraical braid group has two chains of sub-

groups

both terminating in the unpermuted braid group U
n

and such that

(i) for 1 < n, A. < Ai-1 and Ai-1/Ai is free of rank

i-1 , and

(ii) for 1 <- i n, A. < C. and C./A. = B.
1 1 1 1 1

Observe that the elements xi,...,xn-l generate a complement

for An-i+1 in Cn-i+1 (1 <- i <_ n) and that

2 2 -1 2 -1 -1
x.,x.x. x. ,...,x. ... x x x ... x. (11)
1 1 1+1 1 1 n-2 n-1 n-2 1

freely generate a complement (Di, say) for An-i+l in An-i

(1 5 i <- n-1) . Letting T be a transversal for Un in Bn

(with elements in one-to-one correspondence with those of Sn ),

we see that each element of Bn is uniquely expressible in the

form d1...dn-1t , with t e T, di c D. (1 <- i 5 n-1) . This is

the first assertion of the next result; the second follows from

the first by an independent induction.

Theorem 2. The elements of Bn admit a normal form, and Bn

has soluble word problem.

We now turn our attention to the problem of identifying those

elements of Un that centralize An-1 . Write such an element
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c in normal form: for some i with 0 i <_ n-1

c= di+l...dn-1' d
j

E DJ., di+l a e .

Assuming that c a e , that is, i a n-1 , we claim that i = 0

Suppose for a contradiction that 0 < i < n-1 , and recall the

definitions of ui and ai given above. Since i a 0 , it

follows that c commutes with a. = xl...xx.xill...x-1

But so do all d
J

, for j > i+1 (see (11)), whence

=di+laidi- 1

+l -
ai

Conjugating this equation by uil , it follows that uidi+luil

commutes with
uiaiuil

= al (see Exercise 6). But since

uidi+luil E An-l and An-1
l

is a free group it follows from

Exercise 2.16 that
uidi+lui

and al are powers of a common

element. However, a1 is a free generator and thus not a proper

power, and so there is an m E Z such that

uidi+luil = a1

Since i a 0 , conjugation of this equation by x1 shows that

ai =
(Xllu.)d1+1(xllu.)-1

E D2

But D2 n An-1 = E , whence m = 0 and di+l = e , a contra-

diction.

Now suppose that in the action of Bn-1 on An-1 given by

(10), some b x e acted as the identity. Then so would its

image in Bn-1/Un-1
= Sn-1 '

which acts simply by permuting the

ai . Hence, b E Un-1 = D2...Dn-1 , in contradiction to the claim

just established. Thus, Bn-1 acts faithfully on An-1 , that

is, Bn-1 embeds in Aut An-1 . In view of Exercises 3 and 4, we

have the following result.

Theorem 3. For all n E N , Bn = Cn
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Let c = d1...dn-1 E Un centralize An-1 , and assume that

c x e , that is, dl x e . Since every element of

Bn-1 D Un-1 = D2...Dn-1
fixes the product an-1...a1 , so does

dl , and so (by Exercise 2.16 again) there is an m E Z such

that

d1 = (an-l...a1)
m

.

Hence c = (an-1. .* a1 )mum , where um = d2...dn-1 E Un-1 is

uniquely determined by m (by the above claim) and commutes

with an-1...a1 . That such a um exists for some m > 0 fol-

lows from the fact that Z(B ) n U E (Exercise 10). We deduce
n n

tha t

Un
>

CU
An-1) > Z(Bn) n Un > <(x1...xn-1)n>

n

so that our last theorem follows at once from Exercises 9 and 10.

Theorem 4. For n >_ 3 ,

Z(Bn) <(x1.- .xn-1)n>

EXERCISE 1. Find a regular Nielsen transformation from the

basis (a1,...,an) of Fn to (a1,.... ak+l,ak+lakak+l,...,an)

EXERCISE 2. Use the presentation of Sn given in §5 to show

that Sn is a homomorphic image of Bn .

EXERCISE 3. Show that in Aut F , Yi+1Si _ i+1i C.i+1 ,

n
1 <_ i <- n-1 , and deduce that Cn is a homomorphic image of Bn

EXERCISE 4. Compare the action (10) with that of the generators

of Gn-1 <_ Aut Fn-1 (see Fig.4).

EXERCISE 5. Let F be free on b1,.... bn-1 and let xk
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(2 5 k <_ n-1) be the automorphism of F given by

x
k

: (bl,.... bk-l'bk,...,bn-1) (bl,...,bk'bkbk-lbkl,...,bn-1) .

If ak denotes conjugation by bk (w - bklwbk, 1 <_ k <_ n-1)

show that the x's and a's satisfy the relations (9) and (10),

so there is a homomorphism from the group Cn-l of (8) into

Aut F . Noting that the image of the subgroup An-l is just

Inn F , deduce that An-l is free on a
l'

...,an-1
'

EXERCISE 6. Use the braid relations to prove that, for k E Z

and 1 <_ i <_ n-1 , the equation

k -1 -1 -1 -1 k
x 1...x i x 1...x i-1x ix i -1...x

1
x i " ' xl = x

1

holds in B
n

EXERCISE 7. Use the normal form of Theorem 2 to prove that U
n

is torsion free.

EXERCISE 8. Prove that for n >_ 3 , Z(B
n

) 5 U
n

EXERCISE 9. Starting from the trivial braid on n strings,

consider the result of rotating the lower frame through an angle

27 in its own plane. Express the resulting braid in terms of

xl,...,xn-l and evaluate its significance.

EXERCISE 10. Prove that for n >_ 2, z= (x1...xn-l)nE Z(Bn)nUn\E

and that z is not a proper power in U
n

. [Hint: Show by in-

duction that z has normal form

(xl...xn-lxn-l...xl)(x2...xn-lxn-l...x2)...(x
2n-1

and use the fact that xl"'xn-lxn-1"'xl = an-1"'aI is
centralized by x2,...,xn-17.
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EXERCISE 11. Prove that the upper central series of B
n

ter-

minates at Z(Bn) , that is, Z(Bn/Z(Bn)) is trivial.

EXERCISE 12. Prove that B3 is isomorphic to the group of the

trefoil knot, and show that Z(<x,ylx3 =y2>) = <x3> .

EXERCISE 13. Prove that U3 = F2 X F1 , a direct product of

free groups.

EXERCISE 14. Show that Uab is free abelian of rank Zn(n-1)

n

§30. Tangles

A tangle is a piece of a knot diagram from which there emerge

just four arcs, pointing in the compass directions NE,NW,SE,SW,

and thus may be constructed by taking a planar graph P with

vertex set V1 u V2 such that the members of V1 are 4-valent

and V2 consists of four univalent vertices that comprise the

vertices of a square S in R2 with r\V2 s So , and replacing

each vertex in V1 by a crossing. Two tangles are called

equivalent if one can be transformed into the other by a finite

sequence of elementary knot deformations (see Fig.28.2). Thus,

for example, all the tangles in Fig.l lie in different equivalence

classes except for the last two (Exercise 1).

Note that the dihedral group D4 acts on the set of tangle-

classes in an obvious way, as does reflection in the plane of the

Fig.l
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Fig.2

paper (Exercise 2), and that all these operations preserve the

number of crossings. However, we shall be chiefly interested in

the operations illustrated in Fig.2, whose effects on a tangle t

are denoted by to and tb respectively. It is easy to verify

by inspection (Exercise 3) that if we let 0 denote the first

tangle in Fig.l, then the other six can be obtained from it by

applying the operations

a,a 2, a3 3 -1 3,ab,aba,ab a (1)

respectively. Note that the tangles {0abn In E Z} are just the

braids on two strings, and that reflection of these in the NW-SE

diagonal yields the integral tangles
{Oan+l

In E Z} . The torus

knots and links of Example 28.5 are obtained from the latter by

joining their top two and bottom two vertices. The integral

tangles from a subset of the rational tangles, which are obtained

from 0 by applying a finite sequence of operations of the form

a±1,b±1

The free group F = <a,bl > thus acts on the tangle classes,

and in particular on the rational ones, which comprise the orbit

of 0 . Now any element of F can be written in the form

w = bJoa11bJ1 ..,
aIn-lbin-lain

where

ik' Jk-1 E Z , 1 <_ k <_ n E N ,

(2)

(3)
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and this expression is unique if we specify that

ik S O S jk , 1 5 k s n-1 .

With any such element, we can associate the continued fraction

1 1 1 1
w

= In + jn-1+ In-l+
..* jl+ i1 E

(4)

(5)

where Q* = Q u {'} , and - obeys the usual algebraic rules.

Given any tangle t , it is easy to see that tab-1a, tb-lab-1

and tba-lb belong to the same class, and so we define the tangle

group by

T = <a,b I ab-1a = b-1 ab-1 = ba-lb>

Now it is clear that the stabilizer in T of 0 contains the

subgroup B = <b> . The converse inclusion is also true, and

modulo this intuitively reasonable result, we shall prove the

rather striking fact that two rational tangles 0w1,0w2 are
* Y is

equivalent if and only if w1 = w2 in Q .

Theorem 1. With the above notation, the rule w w w
*

defines

a one-to-one correspondence between the right cosets of B in

T and the elements of Q*

The proof begins with an examination of the group SL(2,Z)

whence we shall approach the theorem by a sequence of lemmas.

The modular group M is defined to be the quotient of SL(2,Z)

by its centre, which just consists of ±1
2

(Exercise 5).

Lemma 1. M = z3 *Z
2

.

Proof. The first step is to show that the matrices

/1 11 /0 -11

(6)

b =
I O 1 1

, y= 11 0 I (7)

285



generate SL(2,Z) , and this is done by proving that

(a R\
U = E <b,y>, u E SL(2,Z)

\y sl
by induction on ISI . When S = 0 , (3y = -1 and so S = ±1 .

If Q = -1 , then

U =

1 0 0 1 1 0

a -1 1 a 0 -1

a S

and if P = 1 , then

2 -a -1
-ay u = j= b y

1 0

so that u E <b,y> in either case. Now let S vt 0 . If

181 < 161 , then

yu =

belongs to <b,y> by induction. Otherwise, there is an n c Z

such that IQ+n6I < 161 , whereupon

ybnu =

0 -1)(1 n )(a I )= ( -Y

-

6

1 0 0 1 y b a+ny B+nd

= bay

belongs to <b,y> for the same reason. It follows that

<b,y> = SL(2,Z)

Now define

1 1 0 -1 1 -1

x=by= _
O 1 1 0 1 0

and observe that x3 = -I2 . Thus, M is generated by the el-

ements ±x , ±y of orders 3,2 respectively. To prove that the

resulting homomorphism Z3 * Z2-p0 M is an isomorphism, we have

(8)

to show that no non-trivial word w = ...x±lyx±ly... in SL(2,Z)

can be equal to ±I2 . By taking inverses, changing sign and

conjugating (by xl or y ), we can assume that a minimal counter-

example begins with
x*1

and ends with y . Now such a word is
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a non-empty product of positive powers of

-1 -1
xy=by2=-b= , and

`-1 1 1 0

0 -1

0

')(0
-1 1 0

1 1

= a , say. (9)

Thus,
±I2

is written as a product of elements of the form

a 1 0 1 Q

a , b = ,
a 1 \0 1

a,(3 E N . Since it is clear that both types must actually occur,

there results a matrix with non-negative entries and trace > 2 (Ex-

ercise 6). Since tr(±12) _ ±2 , this is the desired contradiction.

With any matrix

/a R \
E SL(2,Z) ,

Y 6

we can associate a Mobius transformation

Z H az+Y
Sz+S (10)

of the extended complex plane C = C u {-} . Since it is easy to

prove (Exercise 7) that this correspondence is a homomorphism with

kernel ±12 , we let M stand for the group of transformations of

the form (10) E Z , a6 - Sy = 1).

Lemma 2. Under the action of M , the stabilizer of 0 E C is

and thethe infinite cyclic group generated by b = ± (0
1)

orbit containing 0 is Q* .

Proof. Under the action of ± (a b) , 0 is mapped to
Y

(aO+Y)/00+6) = y/6 E Q* , so the stabilizer of 0 is as claimed,

and Q* contains its orbit. Conversely, a typical member of Q*

has the form y/6 with (y,6) = 1 , including the possibilities

{y,6} = {0,1} . Thus, there exist a,R E Z with a6 - Sy = 1 ,
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and 0 is mapped to y/d by + (a s) E M

Now regard the matrices a,b given by (9),(7) as members of

M , so that by san again, the word w of (2), subject to (3)

and (4), may be thought of as a member of M . With this no-

tation and that of (5), we have the following lemma.

Lemma 3 . Ow = w*

Proof. Any Z E C* is mapped by ak,bf (k,9. E Z) to

z + k , z/(fz+1)

respectively. We proceed by induction on n , noting that the

case n = 1 is obvious. Now let n > 1 and assume the result

for n - 1 , so that if

w' = boo all bJl ...
al n-1

then

1 1 1
= qOw, = i-1 +

in-2+
... jl+ 11n

say. Hence,

j i j i
Ow=Ow' bn-1 an_gbn-1 an

i
(q/(jn-lq +1)) a n

+
1 1= i -= w

n jn-1 + q

as required.

Theorem 1 will be proved if we can show that M is generated

by a,b and that the right-hand side of (6) is a presentation

for it. This is done using Tietze transformations in the proof

of the final lemma.
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Lemma 4. M T

Proof. From the proof of Lemma 1, M = <x,y I x3,y2> , and y

is eliminated by the Tietze transformation given by y = xa (9).

Thus we obtain <a,x I
x3,

(xa)2> . Using these two relations in

conjunction with (8) and (9), we have

b = xy-1 = xa-1x 1 = x2a = x la

A further Tietze transformation yields

<a,b
I (ab-1 )3,(ab-la)2>

which is obviously equivalent to (6).

We leave the reader to draw his own conclusions as to how

significant are the satisfying links thus forged between geometry,

arithmetic and algebra under the humble auspices of a single

group.

EXERCISE 1. Use elementary knot deformations to show that the

last two tangles of Fig.l are equivalent. Check that the con-

tinued fractions 1 + i+ 1 and 3 +i+ 3 represent the same

member of Q* = Q U

EXERCISE 2. Show that the group A(4,2,2) = D4 xZ2 acts in a

natural way on the tangle classes.

EXERCISE 3. Check that the tangles of Fig.l are as described

in (1).

EXERCISE 4. Draw the pictures to show that the effect of each

of the operations ab-la, b-lab-1 and ba-lb on any tangle is

to rotate it through 7 about the NW-SE diagonal.

EXERCISE 5. Prove that Z(SL(2,Z)) _ {±I 2}
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EXERCISE 6. Let c e SL(2,Z) be a product of matrices of the

form (a
1

0) 1 S) , a,R E N , involving each factor at least

once. Use induction on the number of factors to prove that

tr c > 2 .

EXERCISE 7. Show that the mapping sending (a e SL(2,Z) to

ythe Mobius transformation
sz + g (acting on C* on the right) is

an epimorphism with kernel
±I2
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Guide to the literature and references

Comments are given below on the material in each

chapter in turn, and these embrace sources, alternative

approaches and suggestions for further reading. The six

books referred to by authors' initials are of general

interest. That the lists of references are fairly minimal

may be excused in view of the extensive and impressive

bibliography in [LS].

[CM] H.S.M. Coxeter and W.O.J. Moser, Generators and

relations for discrete groups, 4th edition,

Springer-Verlag, Berlin-Heidelberg-New York, 1979.

[J] D.L. Johnson, Presentations of groups, Cambridge

University Press, 1976.

[LS] R.C. Lyndon and P.E. Schupp, Combinatorial group

theory, Springer-Verlag, Berlin-Heidelberg-New

York, 1977.

[M] I.D. Macdonald, The theory of groups, Oxford

University Press, 1968.

[MKS] W. Magnus, A. Karrass and D. Solitar, Combina-

torial group theory, Interscience, New York, 1966.

[R] J.J. Rotman, The theory of groups: an intro-

duction, 2nd edition, Allyn and Bacon, Boston,

1973.

1. For the novice, the best introduction to group

presentations is contained in Chapter 8 of [M]. The

definition of free groups (via the adjoint of the forget-

ful functor) in Chapter 11 of [R] closely parallels our

own, while interesting alternatives are given in Chapter

1 of [MKS] and Chapter 3 of [10]. Permutation groups

are used to give a slick proof of the associative law for
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free groups in [12], and the method extends to the corre-

sponding (harder) problem for free products.

The Nielsen-Schreier theorem is proved in [7] for

finitely-generated subgroups, and in [9) for arbitrary

subgroups. That Nielsen's method can be adapted to prove

the general result is shown in [2]. Schreier's method is

extended in [13] to prove the Kurosh theorem [5] for sub-

groups of free products. Both these theorems, as well as

the (even harder) Grushko-Neumann Theorem [3,6] now boast

a number of essentially topological proofs [R] (see also

[81), [1], [4], [11].

[1] D.E. Cohen, Combinatorial group theory: a topo-

logical approach, Queen Mary College Mathematics

Notes, London, 1978.

[2] H. Federer and B. Jdnsson, Some properties of free

groups, Trans.Amer.Math.Soc. 68 (1950), 1-27.

[3] I.A. Grushko, Uber die Basen eines freien Produktes

von Gruppen, Mat. Sbornik, N.S. 8 (1940), 169-182.

[4] P.J. Higgins, Notes on categories and groupoids,

Van Nostrand-Reinhold, New York, 1971.

[5] A.G. Kurosh, Die Untergruppen der freien Produkte

von beliebigen Gruppen, Math.Ann. 109 (1934),

647-660.

[6] B.H. Neumann, On the number of generators of a

free product, J. London Math.Soc. 18 (1943), 12-20.

[7] J. Nielsen, Om Regning med ikke kommutative Fak-

toren og dens Anvendeise i Gruppeteorien, Mat.

Tidssk. B (1921), 77-94.

[8] J.J. Rotman, Covering complexes with applications

to algebra, Rocky Mountain J. of math. 3 (1973),

641-674.

[9] 0. Schreier, Die Untergruppen der Freien Gruppen,

Abh.Math.Sem.Univ. Hamburg 5 (1927), 161-183.

[10] J.R. Stallings, Group theory and three-dimensional

manifolds, Yale University Press, New Haven, 1971.

[11] J.R. Stallings, A topological proof of Grushko's
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theorem on free products, Math.Zeit. 90 (1965),

1-8.

[12] B.L. van der Waerden, Free products of groups,

Amer.J.Math. 70 (1948), 527-528.

[13] A.J. Weir, The Reidemeister-Schreier and Kurosh

subgroup theorems, Mathematica 3 (1956), 47-55.

2. Presentations for the dihedral and quaternionic (or

dicyclic) groups are given in Chapter VII of [1], which

also contains an alternative presentation of Sn and a

related one for An . Another proof of the Basis theorem

appears in [M] and [R], while that given here (including

the Invariant Factor theorem for matrices) appears in

more general form in §16 of [2]. The last theorem in §6

is Theorem 8.16 of [M7, where it is proved more or less

from scratch.

[l] R.D. Carmichael, An introduction to the theory of

groups of finite order, Dover, New York, 1956.

[2] C.W. Curtis and I. Reiner, Representation theory

of finite groups and associative algebras, Inter-

science, New York, 1962.

3. The definition and basic properties of the multipli-

cator are to be found in [14], and some finite groups

with trivial multiplicator and non-zero deficiency appear

in [15]. The deficiency problem for metacyclic groups is

solved in [16] and [1], and the spectral sequence argument

in the latter is obviated by the use of central stem ex-

tensions in [2]. The groups of Mennicke, Macdonald and

Wamsley appear in [12], [11] and [17], respectively, and

the first of these has recently been embedded in a much

larger (5-ply infinite) class by Post [13]. The J(a,b,c)

are studied in [8], which is based on [18]. F(2,8) and

F(2,10) are proved to be infinite in [3], and the bound

for IF(2,9)I is given in [5]. The Fibonacci groups are

introduced in [9] and studied further in [6], [7] and
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several papers by Campbell and Robertson (see the refer-

ences in [10]). These authors have also found two-

generator, two-relation presentations for the SL(2,p) and

SL(2,8) [4], and the latter is the only known example of

an interesting simple group. A more comprehensive list

of references is given in the survey article [10].

[1] F.R. Beyl, The Schur multiplicator of metacyclic

groups, Proc.Amer.Math.Soc. 40 (1973), 413-418.

[2] F.R. Beyl and M.R. Jones, Addendum to 'the Schur

multiplicator of metacyclic groups', Proc.Amer.

Math.Soc. 43 (1974), 251-252.

[3] A.M. Brunner, The determination of Fibonacci

groups, Bull.Austral.Math.Soc. 11 (1974), 11-14.

[4] C.M. Campbell and E.F. Robertson, Two-generator

two-relation presentations for special linear

groups; to appear in Bull. London Math.Soc.

[51 G. Havas, J.S. Richardson and L.S. Sterling, The

last of the Fibonacci groups; to appear in Proc.

Royal Soc. Edinburgh.

[6] D.L. Johnson, Extensions of Fibonacci groups,

Bull. London Math.Soc. 7 (1974), 101-104.

[7] D.L. Johnson, Some infinite Fibonacci groups,

Proc. Edinburgh Math.Soc. 19 (1975), 311-314.

[8] D.L. Johnson, A new class of 3-generator finite

groups of deficiency zero, J. London Math.Soc. 19

(1979), 59-61.

[9] D.L. Johnson, J.W. Wamsley and D. Wright, The

Fibonacci groups, Proc. London Math.Soc. 29 (1974),

577-592.

[10] D.L. Johnson and E.F. Robertson, Finite groups of

deficiency zero, in Homological group theory (ed.
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Index of notation

N natural numbers

No N u {o}

Z integers

Q rationals

R reals

Rn n-dimensional Euclidean space

Rn {(xl,.... xn) E RnI xl ? o}

C complex numbers

n! n factorial, n E N
m

) binomial coefficient, "m choose n"(n

(m,n) highest common factor of m,n E N

Em/n1 integer part of fraction m/n

R[t] polynomials over a commutative ring R with identity

¢k(t) kth cyclotomic polynomial

0(z) Conway potential function

A(x) Alexander polynomial

f*g resolvent of polynomials f,g

GF(p) Galois field of p elements, p a prime

RG group ring of G over R

GL(n,R) group of non-singular nxn matrices over ring R

det A determinant of matrix A

SL(n,R) {A E GL(n,R) Idet A = 1}

< less than or equal to, is a subgroup of

< less than, is a proper subgroup of

< is a normal subgroup of

i1 disjoint union of sets

\ set-theoretic difference
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0 empty set

S.. Kronecker delta
13

© commutative face of diagram, copyright

mapping

mapping whose existence is alleged

effect of mapping on an element

- injection, monomorphism

- surjection, epimorphism

isomorphism

3 there is a unique

1X identity mapping on set X

inc inclusion mapping

nat natural homomorphism

Ker kernel of a homomorphism

Im image of a mapping, homomorphism

HomG(A,B) the group of G-homomorphisms between G-modules A,B

Zn(G,A) n-dimensional cocycles from group G to G-module A

Bn(G,A) n-dimensional coboundaries

Hn(G,A) nth cohomology group of G with coefficients in A

A ® B direct sum of A and B

(D(A) intersection of maximal submodules of A

d(A) minimal number of generators of A

PA A/pA

AG maximal G-trivial factor-module of A

AG maximal G--trivial submodule of A

e identity element of G

E trivial group

Q(w) length of reduced word w

[x] order of x G , modulus of x C

xy conjugate y-lxy
[x,y] commutator x-ly-lxy
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IXI cardinality of set X, underlying polyhedron of

simplicial complex X

X-1 {x1IxEX}, X Q G

X±1 X U
X-1

<X> subgroup of G generated by X c G

R normal closure of R c G

<XIR> group on generators X with relators R

F(X) free group on X

A(X) free abelian group on X

X {xy I x E X,y E Y}, for X,Y 5 G

[X,Y] {[x,y] I x E X,y E Y}, for X,Y s G, the subgroup
generated by this set, when X,Y <_ G

G' derived group of G

Gab "G abelianized", GIG'

Z(G) centre of G

(D(G) Frattini subgroup of G

Gp <{xp I x E G}>, p a prime

M(G) Schur multiplicator of G

Aut G automorphism group of G

Im G group of inner automorphisms of G

y(G) nth term of lower central series of G

d(G) minimal number of generators of G

r(G) d(G) + d(M(G))

r'(G) minimal number of relations needed to define G

def G. max{IXI - IRI I
<XIR> a finite presentation of G>

G
P

the class of finite p-groups for which r(G) = r'(G)

+ definition

+ bonus information anotations in a coset

known information enumeration table

coset collapse
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X+ adjunction of a generator

X- removal of a generator

R+ adjunction of a relator

R- removal of a relator

IG:HI

G x H

G*H

G2H

GOH

Tietze transformations

index of subgroup H <_ G

direct product of groups, Cartesian product of sets

free product of groups

wreath product of groups

tensor product of groups

group of all permutations of a set A

SZ

symmetric group of degree n

cyclic group of order n

dihedral group of degree n

quaternionic group of order 4n

alternating group of degree n

infinite cyclic group

algebraical braid group on n strings

geometrical braid group

unpermuted braid group

Gn(w) cyclically presented group

A(w) G(w)ab

F(r,n) Fibonacci group

F(r,n,k) generalized Fibonacci group

E(r,n) extended Fibonacci group

D(t,m,n) von Dyck group

A(k,m,n) triangle group

Mac(a,b) Macdonald group

M(a,b,c) Mennicke group

W+(a,b,c) Wamsley groups
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d(P) degree of vertex P

d(D) degree of face D

M* boundary of map M

sum over boundary vertices or faces

T(k)
small cancellation conditions, k e N

C(k)

X Euler characteristic

a topological boundary

-it connected sum of surfaces

1r(X) fundamental group of path-connected space X
H1(X)

Tr

1(X)ab

Sn n-sphere

Tn connected sum of n tori, n E No

P real projective plane

P T # P
n n

Kn Tn * P :W P

D disc

M Mbbius band

C cylinder
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Index

Abelian group 51

abelianized group 51

additive group of rationals

31

Alexander polynomial 262

algebraical braid group 276

alternating group 50,117

amphicheiral knot 261

augmentation ideal 178,192

augmentation mapping 178

automorphism group 22,148,276

Axiom of Choice 9,153,159

Bar resolution 168

barycentric subdivision 140

base group 203

basis 164

Basis theorem 54,57,210,258

Beyl 66,203

bogus triangle 257

braid 272

braid group 37

Brunner 76,244

Burnside basis theorem 181,185

Campbell 75

cancellation triple 231

Cartesian 34

Cayley diagram 86,133,213

Cayley's theorem 210

central extension 189

centralizer 23

centre 281

circulant matrix 77

coboundary 155

cocycle 154

coefficients 170

cohomology group 147,155,170

Collins 230

commutator 24

commutator subgroup 51

commutative diagram 3,156,188

compact 246

complement 8,152,195

composition series 180

concrete group 42

conjugacy problem 39

connected space 246

connected sum 248

continued fraction 285

convex hull 246

Conway potential function 268

coset diagram 98,105

coset collapse 90,102,120,125

crossed homomorphism 171

curvature 219

cyclic group 24

cyclically presented group

102

cyclically reduced word 212

cyclotomic polynomial 78

cylinder 247
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Dedekind's theorem 53

deficiency 62,270

Dehn 39,266

Dehn's algorithm 218

derived group 51

dihedral group 43,46,69

Diophantine equation 118

direct product 24,32,160,203

disc 247

discriminant 200

double-dual 221

dual graph 132

Edge-path group 254

elementary knot deformation

259

embedding 258

empty word 5

Epstein 9

equivalence of extensions

153

essential singularity 236

Euler characteristic 250

Euler's formula 22,212,251,

271

exact sequence 162

exponent 201

exponent-sum 58

Factor set 155,189

false lovers' knot 272

Fibonacci group 31,60,75,89,

97,101,124,196,217,238

finitely presented group 23

Five-lemma 153

Fox 259

Fox derivative 264

Frattini subgroup 185,195

free abelian group 2,165

free group 1,229,279

free module 164

free presentation 23,182

free product 34,97,114,118,

197

Freiheitssatz 230

functorial properties 162,

170,174

fundamental group 245,254,

262,275

Gauss-Bonnet theorem 137

Gaussian integers 133

general linear group 43,50

generalized Coxeter group

116,118

generalized quaternion group

45

generator 23

geometrical braid group 276

Golod-Safarevic theorem 74,

147,198

Green 193

graph 21,212

group action 148

group extension 147

group of extensions 156

group of words 5

group ring 177

Hasse diagram 107,275

Hausdorff space 245

Havas 76
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homology group 258,266

homotopy 253

Hopfian group 22

Icosahedron 136

identification code 252,258

identification space 248

infinite dihedral group 197

injective 9

interesting group 63

invariant factors 55

inverse of o-knot 261

inversion in a circle 143

irreducible module 178

isomorphism problem 39

Jacobson radical 180

Jordan curve theorem 213

Klein bottle 247

knot 258

Kno t t 214

knot group 37,262

knot type 259

Kostrikhin 200

Lexicographic ordering 10

link 268

Listing's knot 259,265

localization 147

locally Euclidean 246

loop 133,215,253

lower central series 201

Lucas numbers 60

Lyndon 238,244

Macdonald 70

Magnus 230

manifold 245

map 218

Mennicke 70

metacyclic group 63,84

Miller 70

minimal resolution 183,186

minor 55

M'dbius strip 247

Mdbius transformation 287

modular group 114,285

module 147

monoid 256

Moser 86

multiplication table 32

Neighbourhood 245

Nielsen transformation 19,281

Nielsen-Schreier theorem 24,

60

nilpotency class 73,201

nilpotent group 73,202

nilpotent ideal 180

normal form 279

Obverse of o-knot 261

octahedron 136,231

o-knot 260

one-relator group 118,257

orbit 179,185

orientable surface 247

orthogonal circles 144

Path 253
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permutation group 185

permutation representation

96

p-group 179

piece 226

plan 222

planar graph 212

planar projection 260

pole 236

polygonal knot 259

presentation of group

extension 187

pretzel 256

prime knot 272

primitive root of unity 45,78

principal ideal domain 265

projective 8

projective plane 247

proper power 280

pure braid 275

Quotient space 248

Rank 2,57,164

reduced van Kampen diagram

216

reduced word 5

Reidemeister-Schreier

rewriting process 106,276

relatively free 176

relation matrix 53

relator 23

removable singularity 236

resolution 168

resolvent 82

restriction mapping 164

reverse of o-knot 261

Richardson 76

Robertson 75

Roquette 147

ruler and compass

construction 140

San 29,51,276

Schreier property 21

Schreier transversal 10,25,

85,105,277

Schur Multiplicator 60,173,

203

Seifert's method 265

semi-direct product 151

Serre 179

short exact sequence 150,163

simple group 85

simplex 246

simplicial complex 246

skeleton 254

small cancellation hypothesis

212,226

sphere 247

split exact sequence 163

split extension 63,151,279

split link 271

SQ-universal group 212

stabilizer 185,274,287

Sterling 76

substitution test 29

sum of knots 271

surface 245

surface group 253

surgery 256

Swan 60
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Sylow subgroup 206,210

symmetric group 21,46,60,

133,206,274

symmetrized relators 212

Tame knot 259

tangle 269,283

tangle group 285

tensor product of groups 210

tesselation 131

tetrahedron 136

Tietze transformation 35,

49,60,89,128,196,237,255,

258,263,288

Todd-Coxeter coset enumeration

76,85

torsion free group 282

torsion element 212

torsion subgroup 117

torus 246

torus knot 270

trace 287

transversal 154

tree 254

trefoil knot 258,283

triangle group 114,130,196

triangulation 246

trivial module 179

Trotter 261

true lovers' knot 272

Underlying polyhedron 246

unknot 258

unpermuted braid group 274

upper central series 283

Vandermonde determinant 77

van Kampen diagram 213

von Dyck group 35,50,61,71,

97,100,115,131,196,224

von Dyck's theorem 28

Wamsley 66,70

Wedderburn's theorem 180

wild knot 259

Wirtinger presentation 262

Witt identity 40,71

word length 5

word problem 39,212,228,

244,279

wreath power 206

wreath product 203

Zero-divisor 78
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